Altibase® Application Development

Application Program Interface
User’s Manual

Release 7.1 (November 16, 2017)

ZILTIBASE

Altibase® Application Development Application Program Interface User’s Manual
Release 7.1
Copyright © 2001~2017 Altibase Corp. All rights reserved.

This manual contains proprietary information of Altibase Corporation; it is provided under a license
agreement containing restrictions on use and disclosure and is also protected by copyright patent
and other intellectual property law. Reverse engineering of the software is prohibited.

All trademarks, registered or otherwise, are the property of their respective owners.

Altibase Corp.

10F, Daerung PostTower I,

306, Digital-ro, Guro—gu, Seoul 08378, Korea
Telephone: +82-2-2082-1000 Fax: 82—-2-2082-1099
Homepage: http://www.altibase.com

http://www.altibase.com/

Contents

PrEACE ..ttt et et see st e e s e s e s e s e s e s e s e s e s e s e s e s e e e s e s e e e ssassassaesanns 7
ADOUL THIS IMANUAL ..ottt s sttt 8
AUAIENCE .ottt e R bbb 8
SOftWAIE ENVIFONMENT ...ttt ssss s sss st sss s sss s st st s st bbb st s 8
OFGANIZATION ..ottt s st s et eS8 Re bbbt 8
DocuUMENLAtION CONVENTIONS ...ttt sttt st et ss st ss s ss e ss st ssssnens 9

REIALEA REATING....ooueeeierieere ettt sttt 11

ONINE MANUAIS ..ottt sttt bbbt 11
Altibase Welcomes YOUr COMMENTS ... sss s s sssss s sses s ssssses 12

1 The PHP Interface ceeesesneensesasestesasesssasessrsssesasesaesares 13
1.1 About the PHP Module Of ARIDASE ...t ssssessaens 14

1.2 Installing the ODBC Manager for Integration with PHP ..o 15
1.2.1 The ODBC Manager in UnixX @and LiNUXc..ccooininisnssisnssssssssssssssssssssssssssssssssssssssenns 15

1.3 PHP Functions for ODBC CONNECLIVILYcvvriverivenriisrssissnssssssssssssssssses 17
1.3.1 SAMPIE TESE oottt ettt ss s s sttt 17

2 PDO DIVET ...ueeeeeeeceeecneentesneetesaeessesssessesseessssssesassssesassssessssssessssssessssssesssessessssssssssssassssesasssassass 19
2.1 INStAllation @NA SETUP ..ttt sbs sttt bbbttt 20

2. 1.1 DOWNIOAA ..ottt st 20

2. 1.2 INSTAHALION c.ooe ettt 20

2.1.3 ENVIFONMENT SEEUPD weoeerrieriieciieeiie ettt st sttt 20

2.2 CONSTIAINTS oottt bbb bbb bbb bbbttt ettt nn st s 21

2.3 HOW 0 USE ..ottt sttt bbb bbb bbb bbb bbbttt ens 22
2.3.1 DSN CONFIQUIBLION ..ottt ettt eesesess st sss st ess st sbs st sss st 22

2.3.2 CONNECHION ALLHDULESoovvee sttt 22

2.3.3 Parameter BINAING ... ssss st st sssss st s ssesssnns 23

2.3.4 COIUMN BINAING ..ottt ssss sttt ss s ss s ssssss bbbttt sens 23

2.3.5 Other BiNdING CONSLIAINTScovvverirrieerieriesine sttt ssessssssssssssssssssssssssssssss st ssssssssssssnns 24

24 EXGIMPIES .oooeeeriiesiee ettt st st ss st sS4kt 25
2.4.1 Connection Setup and QUENY EXECULION ... ssssssssssenns 25

2.4.2 DATE FOIMAt SETUP ..ottt sttt ettt ss st sttt st ss sttt st st ssssssnses 25

2.4.3 EXECULION Plan CRECK ...ttt ssss s ssssss s sssssss st sttt ss s ssns 25

244 CUISOE HOIAING oot sssss sttt ss bbbttt 26

3 PERL DBD DBL.......... o eeeeeeecceeeecsaeeccaeccssanessassessasssssasesssssassasssssasssssasessasssssasssssassssassessassssses 27
3.1 Overview of the Perl DBD and DBL......... st sss s ssssessasenns 28

Contents 3

3.2 Perl Package INSAATION ...t eesssesesssses st essssesesss st ssss s sssssesssssnns 29

3.2.1 The Perl Package Installation ProCEAUIE ...t essenes 29

3.3 Installing the AIIDASE DBD ...ttt sttt ss s ss s s st sssssssenes 30
3.3.1 The Altibase PERL DBD Installation ProCeAUIe.......mcmcemeceincernsecrinecsisseceseeseseneee 30

4 XA Interface 33
AL XA INTEITACE oottt ettt b8R8 R8s 34
Z.LL XA GIOSSAIY coorveereeemeeeeseeessseesesseesesesesssssesss s s ss etk 34
A.1.2 XA SEIUCTUTE oottt et e e 35
4.1.3 XA and 2PC (TWO-Phas@ COMMUL) ...ttt se e e ses e s ess s seses s ess e 36
414 Xa_SWITCN_t SETUCTUIE c.covveieeictc ittt esi st sninens 37
4.1.5 TRE XA LIDIAIY oottt sttt s bbbttt 37

4.2 TRE XA INTEITACE ..ottt et es stk 38
B.2.1 XA FUNCHIONS .ttt csis it e st bt e 38

A3 USING XA ..ottt ss s sss s s ss s ss 582588888 E SRRttt 43
4.3.1 EXECULING ODBC/XAoooreeeieeeeeiseeeeeiseeeeees s ssssss s sssss s esss s sssss s ssss s st sss s sss s sssssesssssnns 43
4.3.2 EXECULING APRE/XA ...ttt eess et sesss s st sss st st et ss et st ssnt e 44
4.3.3 EXECULING JDBC/XA ..ottt ssi sttt sttt sssssens 45
4.3.4 XA TranSaCtioN CONLIOL ... esesees st sss st ssess s sss st st sssessssenees 46
4.3.5 Changing an Existing Application into @ TPM Applicationccccoreonmeeennecenneceesneeeenenees 48

4.4 Limitations WHEN USING XA ... eees et sesesssss s stss s sss s sss st s ss s s sss sttt ssssnees 50
441 Limitations 0N USE OF SQL ...t ees e tees et 50
4.4.2 Limitations related to Transaction BranChes ... ssesssesseseeees 51
4.4.3 No Support for AssOCIation MIGration ... eessssesssesssssssessssesssseeees 51
4.4.4 No Support for ASYNChroNOUS CallS ... sesseessssssssssssssssssssssesssseeees 51
4.4.5 No Support for Dynamic REGISTIration ... eesesesssssesssssssssssesssssssssneees 51
44,6 SEIVET SNUTAOWN....ooiiiceieiicteeceie it esi ettt st 52

4.5 JDBC DiStributed TranSaCIONS.cc.ceeeeeeeeeeeiseeeimeeeesseeesiseestsseessssesssssesesssssesessssssssssssssssssssesssesssssessssnssess 53
4.5.1 JTA (Java Transaction API) and Application SEIrVEr ... 53
4.5.2 XA COMPONENTS ..ottt s s s s e s 53
4.5.3 ErTOr HaNAIING ..ottt st st ssss s sss st sttt ss s sssssen 56
4.5.4 Making XA Settings in APPliCAtioN SEIVETS ...t sssssssssssssees 56
A.5.5 EXAMIPIE oottt sss sttt st 60

4.6 How to Solve Application Problems UsSING XA........irinninsinnsssssssssssssssssssssssssssssssssssssenns 64
4.6.1 Checking XA Tracking INfOrmMation ... sssssssss st sssssssssssnness 64
4.6.2 Processing IN-doubt TranSACIONS ..ot cesssssi s ssssssss st sssssssssssnness 64
4.6.3 Checking Heuristically Completed TranSactions...........coiennerennnreeinnseessnseeesssssessssssssssssneees 65

5 The iLoader APL........... o eeeeereeeereeseeseeseeseeseesessessessessessessesseesessessesseeseeseessessessessessessesseseeses 67
5.1 OVErvieW Of the ILOAAEI APL..........ereer ettt sssssess sttt sss s sss st st ssssssseas 68

4 Application Program Interface Users’ Manual

5.2 USING the TLOBAET AP ...ttt eses s eesss s sss s sss sttt sss s 69

5.2.0 HEAAEE FIlES oottt ettt sss st sttt 69
5.2.2 LIDF@IIES oottt sttt ettt 69
5.2.3 SAMPIES ..ottt ettt Rttt 69

5.3 ILOAdEr APL Data STIUCLUIESovveereeereeeeee et ssssssss s sssssss s st ss s ss s ssss s sssssssssssnnes 70
5.3.1 The iLoAdEr HANAIE ...ttt sttt 70
5.3.2 EITOT STMUCTUIE oottt sttt sttt bbbt bbbt sn s st s 70
5.3.3 LOG STTUCTUIE oottt e e bt 71
5.3.4 OPLION SIIUCLUE oottt 73
5.3.5 iLOAdEr APL ENUMEIALOLS ..ot ssess s sssssss s ssse s ss st st s s sens 75

5.4 THE TLOAAET APL.......ooees sttt bbbttt 76
5.4.1 altiDaSe_l0GAEI _AATAIN ...ttt ess s e e s esnaes 76
5.4.2 altiDase_10@AEI_ATAOUTL ...t ee e ee s e ss e ess s eseesesesss e 78
5.4.3 altibDase_iloader_fiNal ...t ss sttt 81
5.4.4 altibase_iloader_fOrMOUL ... sss st ssssssssssssss st sss s sssssssson 81
5.4.5 altiDaS@_il0@EI_INIT......ieiieiieeses ettt sttt st sttt 83
5.4.6 altibase_iloader_OptiONS_INIt ...t ss s ssssss st ssss st s sssenns 85
5.4.7 CallbackFUNCHONNAME........oiiririresiesiie ittt ss s ss s ss sttt ssnssss 85

6 The CheckSErver APL........ . eeereereereeeeeseeeeesaeeeesseeseesasessesssessesssesassssesassssesassssessassassns 89
6.1 Overview Of the CheCKSEIVEr APL..... et ss st sa s 90
6. 1.1 RESTNCHIONS oottt sttt sttt sttt ss sttt ettt 90

6.2 USING the ChECKSEIVET APL ...ttt ssss s sss st st bttt et 91
6.2.1 HEAAET FilE..oonooeeeee sttt 91
6.2.2 The CheCKSEIVEr LIDIAMI@S ... 91
5.2.3 SAMIPIES ..ottt ettt 91

6.3 CheckServer API Data STIUCLUIE ...ttt sttt ssssssssssssssssssssssssssssssenss 92
6.3.1 The CheckServer HandIe ... sssssssssssssssssssssssss st sssssss st ssssssnns 92

6.4 ThE ChECKSEIVET APttt sss sttt st s st 93
B.4.1 AltIDASE _CNECK SEIVE ...ttt sttt sees 93
6.4.2 altiDase_CNECK SEIVEI TINAI ...ttt ee s sessase s ss s sesassese s 94
6.4.3 AltiDASE_CRECK SEIVET INTT.....oeieieeee ettt sttt sees 95
6.4.4 altibase_CRECK SEIVEI_CANCE ...ttt 96

Contents 5

Preface

About This Manual

This manual explains how to use the Altibase API.

Audience

This manual has been prepared for the following users of Altibase:

Database administrators
Application developers

Programmers

It is recommended that those reading this manual possess the following background knowledge:

Basic knowledge in the use of computers, operating systems, and operating system utili-

ties
Experience in using relational databases and an understanding of database concepts

Computer programming experience

Software Environment

This manual has been prepared assuming that Altibase 7.1 will be used as the database server.

Organization

This manual is organized as follows:

Chapter1: The PHP Interface
This chapter explains how to integrate PHP pages with Altibase using ODBC functional-
ity of PHP.

Chapter2: PDO Driver
This chapter explains how to use the Altibase PDO driver to interact with Altibase. The
Altibase PDO driver (pdo_altibase) is available as a pecl package from the official

Altibase site.

Chapter3: PERL DBD DBI
This chapter explains how to use the Perl DBD (Database Driver) and DBI (Database
Interface) with Altibase. It describes in detail how to install Perl and the Altibase Perl DBD

and how to check the status of the Altibase Perl DBD.

Chapter4: XA Interface

This chapter introduces the data structures and functions that are needed to use the XA

8 Application Program Interface Users’ Manual

functions supported by Altibase and provides basic procedures for using ODBC, APRE

and JDBC in an XA environment..

e Chapter5: The iLoader API

This chapter introduces the Altibase iLoader API, which is an application programming

interface that lets you create applications that use function calls to download data from,

or upload data to, an Altibase database server.

e Chapter6: The CheckServer API

This chapter introduces the Altibase CheckServer API, which is an application pro-

gramming interface for creating applications that use function calls to monitor whether

the Altibase server has terminated abnormally.

Documentation Conventions

This section describes the conventions used in this manual. Understanding these conventions will

make it easier to find information in this manual and in the other manuals in the series.

There are two sets of conventions:

e Syntax Diagram Conventions

e Sample Code Conventions

Syntax Diagram Conventions

In this manual, the syntax of commands is described using diagrams composed of the following

elements:
Elements Meaning
Reserved Indicates the start of a command. If a syntactic element starts
Word with an arrow, it is not a complete command.
> Indicates that the command continues to the next line. If a syn-
tactic element ends with this symbol, it is not a complete com-
mand.
. Indicates that the command continues from the previous line. If

a syntactic element starts with this symbol, it is not a complete
command.

-

Indicates the end of a statement.

SELECT

Indicates a mandatory element.

Preface 9

Elements Meaning

Indicates an optional element.

Indicates a mandatory element comprised of options. One, and
ADD . .
i only one, option must be specified.

Indicates an optional element comprised of options.

Indicates an optional element in which multiple elements may
s be specified. A comma must precede all but the first element.

DESC

@,

Sample Code Conventions

The code examples explain SQL statements, stored procedures, iSQL statements, and other

command line syntax.

The following table describes the printing conventions used in the code examples.

Convention Meaning Example
[1 Indicates an optional item. VARCHAR [(size)] [[FIXED [] VARIA-
BLE]

{} Indicates a mandatory field for { ENABLE | DISABLE | COMPILE }
which one or more items must be
selected.
A delimiter between optional or { ENABLE | DISABLE | COMPILE }
mandatory arguments. [ENABLE | DISABLE | COMPILE]

10 Application Program Interface Users’ Manual

Indicates that the previous argu- iSQL> select e_lastname from employees;
ment is repeated, or that sample E_LASTNAME

code has been omitted. | T T
Moon

Davenport
Kobain

20 rows selected.

Other symbols Symbols other than those shown EXEC :pl:=1;
above are part of the actual code. acc NUMBER(11,2);

Italics Statement elements in italics indi- SELECT * FROM table_name;
cate variables and special values CONNECT userID/password;

specified by the user.

Lower Case Let- | Indicate program elements set by SELECT e_lastname FROM employees;
ters the user, such as table names,
column names, file names, etc.

Upper Case Let- Keywords and all elements pro- DESC SYSTEM_.SYS_INDICES_;
ters vided by the system appear in up-
per case.

Related Reading

For additional technical information, please refer to the following manuals:
* Altibase Installation Guide
* Altibase Administrator's Manual
* Altibase Replication Manual
* Altibase Precompiler User's Manual
* Altibase ODBC Reference
* Altibase iSQL User’s Manual
* Altibase Utilities Manual

* Altibase Error Message Reference

Online Manuals

Online versions of our manuals (PDF or HTML) are available from Altibase's Customer Support

site (http://altibase.com/support-center/).

Preface 11

file:///D:/words/(http:/altibase.com/support-center/

Altibase Welcomes Your Comments

Please feel free to send us your comments and suggestions regarding this manual. Your com-
ments and suggestions are important to us, and may be used to improve future versions of the

manual.

When you send your feedback, please make sure to include the following information:
e The name and version of the manual that you are using
* Any comments that you have about the manual
e Your full name, address, and phone number

For immediate assistance with technical issues, please contact Altibase's Customer Support site

(http://altibase.com/support-center/)..

We always appreciate your comments and suggestions.

12 Application Program Interface Users’ Manual

file:///D:/words/(http:/altibase.com/support-center/

1 The PHP Interface

This chapter explains how to integrate PHP pages with Altibase using PHP's ODBC functionality.

The PHP Interface 13

1.1 About the PHP Module of Altibase

1. The following data types are supported for use with Altibase and PHP:

® resource

e int

e bool

* double

e float

» string

* array

* HashTable

2. The port number in db.php, the sample program, must be changed so that it matches the port

number that is actually being used on the Altibase server.

14 Application Program Interface Users’ Manual

1.2 Installing the ODBC Manager for Integration with
PHP

In order to integrate Altibase with a PHP interface, the ODBC Manager must be installed. This

section describes how to install the ODBC Manager in Unix, or Linux environments.

1.2.1 The ODBC Manager in Unix and Linux

In a Unix or Linux environment, complete the following steps to install the ODBC Manager:

1. Download unixODBC.
It can be downloaded from the unixODBC website (http://www.unixodbc.org).

2. Install unixODBC.
After downloading the unixODBC source files, it is necessary to compile unixODBC. Move

the source files to the desired location and run the following commands from a command
prompt:

Jconfigure -prefix=installation path -enable-gui=no -—enable-drivers=no
make
make install

3. Configure the unixODBC environment.

a. Set the $ODBCSYSINI environment variable. Set its value to the same value as the $SHOME

environment variable for the user that was used to install Altibase.

export ODBCSYSINI=~
b. Add an environment variable indicating the path where the unixODBC Driver Manager is in-

stalled, as shown below. Depending on the platform and whether the OS is a 32-bit or 64-bit
OS, the library path will be one of LD_LIBRARY_PATH, LD_LIBRARY_PATH_64 or

SHLIB_PATH.
In the following example, unixODBC is installed at /usr/local/odbcDriverManager32.

export LD_LIBRARY_PATH=/usr/local/odbcDriverManager32/lib:$LD_LIBRARY_PATH
In the following example, unixODBC is installed at /usr/local/odbcDriverManager64.

export LD_LIBRARY_PATH=/usr/local/odbcDriverManager64/lib:$LD_LIBRARY_PATH
4. Create the following two files in the $ODBCSYSINI path:

odbc.ini

odbcinst.ini

The PHP Interface 15

http://www.unixodbc.org/

odbcinst.ini must be an empty file having a size of 0 bytes.

In odbc.ini, specify the DSN name, the path and directory where the ODBC driver of Altibase is
installed, and the server address and port number.
Here are some sample odbc.ini file contents:

[Altibase]

Driver = /home/altibase/altibase_home/lib/libaltibase_odbc.so

Server =127.0.0.1
Port = 20300

16 Application Program Interface Users’ Manual

1.3 PHP Functions for ODBC Connectivity

Altibase supports all standard ODBC functions, and thus all ODBC functions that are typically
used in PHP pages can be used with Altibase without any special considerations. For a detailed
explanation of the ODBC functions that can be used with PHP, please refer to the official PHP

online documentation, which can be found at:

http://php.morva.net/manual/en/index.php

1.3.1 Sample Test

<?
/I SYSTEM DSN, USER_ID, USER_PASSWORD
$conn = odbc_connect("Altibase”, "SYS", "MANAGER");

if ($conn)
{

/I direct-execution

echo "now, i create table t1 (id integer, name char(20)
";
odbc_exec($conn, "drop table t1");

odbc_exec($conn, “create table t1 (id integer, name char(20))");

/I prepare-execution
echo "now, i insert into t1 value (100, Lee)
";
$stmt = odbc_prepare ($conn, "insert into t1 values (?, ?)");
$lnsert = array (100, "Lee");
if (lodbc_execute($stmt, &$Insert))

echo (“error");

/1 single-selection
$res = odbc_do ($conn, "select id, name, sysdate from T1");
odbc_fetch_row ($res);
$ID = odbc_result($res, 1);
$SNAME = odbc_result($res, 2);
$DATE = odbc_result($res, 3);
echo ("id = $ID , name = $NAME datetime = $DATE
");
odbc_close($conn);

ol

The PHP Interface 17

http://php.morva.net/manual/en/index.php

2 PDO Driver

This chapter describes how to use the Altibase PDO driver to interact with Altibase. The Altibase PDO

driver (pdo_altibase) is available as a pecl package from the official Altibase site. The pdo_altibase was
developed using the Altibase CLI driver, so the CLI must be installed to use pdo_altibase. It is also

affected by the environment variables used by the CLL

PDO Driver 19

2.1 Installation and Setup

Here we describes how to download and install pdo_altibase and set environment.

2.1.1 Download

To use pdo_altibase, you have to use pecl environment. Download the pecl package from the url

below.
1. Move to http://support.altibase.com/kr/product

2. Download PDO_ALTIBASE-1.*.*.tgz

2.1.2 Installation

Install pdo_altibase using pecl.

pecl install PDO_ALTIBASE-1.0.0.tgz

2.1.3 Environment Setup

Add extension usage settings to the configuration file such as php.ini.

extension=pdo_altibase.so

20 Application Program Interface Users’ Manual

http://support.altibase.com/kr/product

2.2 Constraints

1.

pdo_altibase can not be used with pdo_odbc at the same time. Enabling both extensions can

cause unexpected errors.

The following items in the PDO manual are not supported:
* PDO::lastinsertld
* PDO::getAttribute, PDO::setAttribute

* PDO:ATTR_CONNECTION_STATUS

* PDO:ATTR_ORACLE_NULLS

* PDO:ATTR_PERSISTENT

* PDO:ATTR_SERVER_INFO

* PDO:ATTR_STRINGIFY_FETCHES

* PDO:ATTR_EMULATE_PREPARES

* PDO:ATTR_PREFETCH

* PDO:MYSQL_ATTR_USE_BUFFERED_QUERY
* PDOStatement::getAttribute, PDOStatement::setAttribute

e PDO:ATTR_CURSOR_NAME

. PDOStatement::getColumnMeta

For other constraints, see parameter bindings, column bindings, and other binding con-

straints.

PDO Driver

21

2.3 How to Use

2.3.1 DSN Configuration

The DSN configuration of pdo_altibase is as follows.

Attributes Description
DSN prefix “altibase”
Server Host name or IP address
Port Server port number

2.3.1.1 Example

"altibase:Server=127.0.0.1;Port=20333"

2.3.2 Connection Attributes

The following properties are available for PDO :: getAttribute () and PDO :: setAttribute (). See

"Constraints" for attributes that are not available.

Attributes Description

The format to use for representing
PDO::ALTIBASE_DATE_FORMAT DATE. See 0Changing the DATE
Formaté.

Whether or not to get a plan of ac-
tion.

PDO ::
ALTIBASE_EXPLAIN_PLAN_OFF:

Do not get a plan of action.

PDO
PDO:ALTIBASE_EXPLAIN_PL AN ALTIBASE_EXPLAIN_PLAN_ON:
Obtain the determined performance
plan after Prepare and Execution.
PDO ::
ALTIBASE_EXPLAIN_PLAN_ONLY:
After Prepare Obtain the execution
plan determined before Execution.

22 Application Program Interface Users’ Manual

Attributes

Description

For more information, see Using
Samples)> Checking Action Plans.

PDO:ALTIBASE_DEFER_PROTOCOLS

Prepare and execute the call repeat-
edly to set the protocol optimization
to improve the performance of the
program written.

To use this attribute, one connection
object should not be shared by mul-
tiple threads.

Also, for performance, you need to
write a program with a structure that
calls prepare once and then calls ex-
ecute repeatedly.

0: Do not optimize the protocol (de-
fault)

1: execute related protocol optimiza-
tion

2: execute, close Related protocol
optimization

ex> $ db-> setAttribute (PDO ::
ALTIBASE_DEFER_PROTOCOLS, 1);

2.3.3 Parameter Binding

pdo_altibase does not support named parameters.

The fourth argument, length, is used only for the current hint and is not treated as a valid value. If

length is required, it should be truncated instead of the length argument.

2.3.3.1 Example

$stmt = $db->prepare("SELECT * FROM t1 WHERE val = ? OR val = ?");

$stmt->bindParam(1, $vall);
$stmt->bindParam(2, $val2);
$stmt->execute();

2.3.4 Column Binding

pdo_altibase does not affect the behavior if you specify type and maxlen of bindColumn ().

Depending on the SQL data type, the value is taken as a binary or string, and the processing fol-

lows the PDO operation.

PDO Driver

2.3.5 Other Binding Constraints

BIT, VARBIT, BYTE, VARBYTE, NIBBLE, LOB, and GEOMETRY types are limited. It is limited to

a few queries such as simple INSERT.

24 Application Program Interface Users’ Manual

2.4 Examples

2.4.1 Connection Setup and Query Execution

2.4.1.1 Sample Code
$db = new PDO("altibase:Server=127.0.0.1;Port=20333", "sys", "manager");

foreach ($db->query("SELECT * FROM dual") as $row) {
print_r($row);

2.4.2 DATE Format Setup

You can set which string format to use as the default for DATE.

2.4.2.1 Sample Code

$db->setAttribute(PDO::ALTIBASE_DATE_FORMAT, "YYYY-MM-DD");
$attr_dateform = $db->getAttribute(PDO::ALTIBASE_DATE_FORMAT);
echo "attr_dateform = $attr_dateform\n";

$stmt->execute();

echo $stmt->fetchColumn(), "\n";

2.4.2.2 Output

attr_dateform = YYYY-MM-DD
2017-04-18

2.4.3 Execution Plan Check

The PDO object's setAttribute () function can be used to set whether or not to execute the plan.

2.4.3.1 Sample Code

$attr_plan = $db->getAttribute(PDO::ALTIBASE_EXPLAIN_PLAN);
echo "attr_plan = $attr_plan\n";

$db->setAttribute(PDO::ALTIBASE_EXPLAIN_PLAN, PDO::ALTIBASE_EXPLAIN_PLAN_ONLY);

$attr_plan = $db->getAttribute(PDO::ALTIBASE_EXPLAIN_PLAN);
echo "attr_plan = $attr_plan\n";

$stmt = $db->prepare("SELECT * FROM dual");

$stmt->execute();

print_r($stmt->fetchAll());

echo $stmt->getPlanText();

$stmt = null;

$db->setAttribute(PDO::ALTIBASE_EXPLAIN_PLAN, PDO::ALTIBASE_EXPLAIN_PLAN_ON);
$attr_plan = $db->getAttribute(PDO::ALTIBASE_EXPLAIN_PLAN);
echo "attr_plan = $attr_plan\n";

$stmt = $db->prepare("SELECT * FROM dual");

$stmt->execute();

print_r($stmt->fetchAll());

echo $stmt->getPlanText();

PDO Driver

$stmt = null;

2.4.3.2 Output

attr_plan=0
attr_plan=2
Array
[0] => Array
(

[dummy] => X
[0] => X

)

PROJECT (COLUMN_COUNT: 1, TUPLE_SIZE: 3, COST: 0.01)
SCAN (TABLE: DUAL, FULL SCAN, ACCESS: ??, COST: 0.01)

attr_plan=1
Array

[0] => Array
(

[dummy] => X
[0] => X

)

PROJECT (COLUMN_COUNT: 1, TUPLE_SIZE: 3, COST: 0.01)
SCAN (TABLE: DUAL, FULL SCAN, ACCESS: 1, COST: 0.01)

2.4.4 Cursor Holding

Executiong Commit, and Rollback command will still maintain the cursor being fetched.

2.4.4.1 Sample Code

/I AUTOCOMMIT attribute must be false to use HOLD
$db->setAttribute(PDO::ATTR_AUTOCOMMIT, false);

/I HOLD attribute should be given when preparing

$stmt_sel = $db->prepare("SELECT * FROM pdo_hold", array(PDO::ALTIBASE_CURSOR_HOLD =>
PDO::ALTIBASE_CURSOR_HOLD_ON));

$stmt_del = $db->prepare("DELETE pdo_hold WHERE id = ?");

/I TODO
Il To replace AUTOCOMMIT you need to clean up all stmt
unset($stmt_sel);

unset($stmt_del);
$db->setAttribute(PDO::ATTR_AUTOCOMMIT, true);

26 Application Program Interface Users’ Manual

3 PERL DBD DBI

This chapter explains how to use the Perl DBD (Database Driver) and DBI (Database Interface)
with Altibase. It describes in detail how to install Perl and the Altibase Perl DBD and how to check
the status of the Altibase Perl DBD.

PERL DBD DBI 27

3.1 Overview of the Perl DBD and DBI

A Perl DBI (Database Interface) is a database API written in the form of a PERL5 module. This
module defines a series of methods and attributes for accessing a database for which a DBD

(Database Driver) has been created. This DBD is also available in the form of a PERLS module.

The DBI enables an application to access various databases via respective DBDs. The entity that
actually handles communication with the database is the DBD. The DBD driver of Altibase is
called DBD::altibase. The available attributes and methods are classified as either database at-

tributes and methods or statement attributes and methods.

DBl

Altibase Oracle DB2 mysaql
DBD DBD DBD DBD

' R SR

28 Application Program Interface Users’ Manual

3.2 Perl Package Installation

3.2.1 The Perl Package Installation Procedure
1. Download the Perl package that is suitable for the OS on which the server is running.

a. Uncompress the package (e.g. perl-5.8.5.tar.gz) in the desired directory.

gzip -cd perl-5.8.5.tar.gz | tar xvf —
b. Execute the configure command in the directory in which the Perl package was uncom-

pressed.
configure
c. Execute the make command in the directory in which the Perl package was uncom-
pressed.
make
d. From the directory in which the Perl package was decompressed, install the package us-

ing the root account.
make install

2. Download the Event package (e.g. Event-1.00.tar.gz) to install the Event module.

a. Uncompress Event-1.00.tar.gz in the directory in which it is desired to install the Event

module.

gzip -cd Event-1.00.tar.gz | tar xvf —
b. Execute the configure command in the directory in which the Event package was uncom-

pressed.

Jconfigure
c. Execute the make command in the directory in which the Event package was uncom-

pressed.

make
d. From the directory in which the Event package was decompressed, install the module

using the root account.

make install

PERL DBD DBI 29

3.3 Installing the Altibase DBD

3.3.1 The Altibase PERL DBD Installation Procedure

3.3.1.1 Check the Perl Installation

Execute perl on the command line with the -V option to check the value of the dlext configuration
variable. It must be sl on HP-UX and so on other platforms. If this value is not correct, it will be

necessary to reinstall Perl.

3.3.1.2 Install the Perl DBI

Install the Perl DBI package, which is a prerequisite for compiling the Perl DBD.

Method 1) Using the root account:

perl -MCPAN -e shell
prompt> install DBI

Method 2) If the above method does not work, download the package via ftp from the ad-

dress shown below, compile it, and install it using the following commands.

ftp://ftp.nuri.net/pub/CPAN/modules/by-module/DBI

1. perl Makefile.PL
2. make
3. make install

3.3.1.3 Download and Uncompress the Altibase Perl DBD Files

Visit http://support.altibase.com and download the file from the location shown below. Because
the Altibase Perl DBD is a 32-bit driver, the Altibase 32-bit client package or 32-bit server package
must already be installed on the system on which the DBD is being installed. Additionally, the

value of the $ALTIBASE_HOME environment variable must be correctly set.

/download_back/altibase/PERL-DBD/altibase-perIDBD-YYYYMMDD.tar.gz

Uncompress the file.

gzip —cd altibase-perIDBD-YYYYMMDD.tar.gz | tar xvf -

3.3.1.4 Make the Altibase Perl DBD

Execute make on the install.mk file, which was included in the compressed file downloaded in the

previous step, to create the Makefile which will be used to create the DBD.

make -f install.mk

Execute make again without any arguments to specify that Makefile is to be used as the source.

30 Application Program Interface Users’ Manual

ftp://ftp.nuri.net/pub/CPAN/modules/by-module/DBI

This creates the shared library that is used as the Perl DBD of Altibase. On HP-UX;, the resultant
filename is altibase.sl. On platforms other than HP-UX, the resultant filename is altibase.so, and it
is created in blib/arch/auto/DBD/altibase.

make

Execute make install as root. This installs the Perl DBD of Altibase in Perl.

make install

In this example, the Altibase DBD can be seen in the folder shown below:

lopt/perl_5.8.8/bin/lib/site_perl/5.8.8/1A64. ARCHREV_0/auto/DBD/altibase

3.3.1.5 Make Additional Environment Settings

Set the $LD_PRELOAD environment variable. This task must be performed on HP-UX and certain

other platforms. On these platforms, if this environment variable is not set, an error message will
be displayed.

3.3.1.6 Test the Altibase Perl DBD Installation

After starting the Altibase server, change the values of the DSN and PORT_NO keyword/value
pairs in the test.pl file to suitable values.

my $dbh =
DBI->connect("dbi:altibase:DSN=127.0.0.1;UID=SYS;PWD=MANAGER;CONNTYPE=1;NLS_USE=US7ASCII;P
ORT_NO=20999", ", "", {'RaiseError' => 1});

Finally, test the Perl installation by executing Perl on the test.pl file.

perl test.pl

PERL DBD DBI 31

4 XA Interface

This chapter explains the general concept of distributed transactions, introduces the XA standard,
and describes the XA interface. It explains how to use a global transaction manager to access
Altibase via ODBC, JDBC and APRE, and specifies the support for the XA within Altibase. It also
describes the limitations of the XA distributed transaction processing model and how to deal with

problems that can arise in applications.

XA Interface 33

4.1 XA Interface

XA is a standard interface that is used for processing distributed transactions (also known as

“global transactions”). It was proposed by The Open Group (formerly X/Open).

A distributed transaction (also known as a “global transaction”) is a transaction that spans two or
more nodes connected via a network. The database systems provide the resources for the
transaction, while a TM (Transaction Manager) creates and manages the global transaction, which
oversees all operations performed on these resources. The XA standard thus enables distributed
applications to share resources provided by multiple database servers, and makes global trans-

actions possible.

4.1.1 XA Glossary

Application (AP)

An application defines the necessary transactions and the operations that constitute a transaction.

An application can be written using, for example, the precompiler or the ODBC CLI.
Global Transaction

This refers to multiple transactions that are managed as a single transaction by a TM. It is essen-

tially a distributed transaction.
Heuristic Completion

In some situations, when an RM does not receive an expected command pertaining to an in-doubt
transaction, such as a COMMIT command or the like, the RM proceeds to commit or roll back the
transaction of its own accord. Completion of transactions in this way is referred to as “Heuristic
Commit” or “Heuristic Rollback”, or collectively as “Heuristic Completion”. Typical causes are

network failure and transaction timeouts.
In-doubt Transaction

An “in-doubt transaction” is a transaction branch that has been prepared on an RM (i.e. DBMS)
and for which a commit or rollback message has not yet been received. It is also known as a

“pending transaction”.
Resource Manager (RM)

A Resource Manager (RM) controls a resource that is accessed by an XA transaction. It must be
possible to restore the resource to its original state in the event of a failure. An RM can be, for

example, a relational database, a transactional queue, or a file system.

Transaction Branch

34 Application Program Interface Users’ Manual

A transaction branch is essentially a sub-transaction that is part of the global transaction. It is ex-
ecuted on one of the Resource Managers (see above) participating in the global transaction.
There is a one-to-one relationship between a transaction branch and a so-called “XID” (i.e. a

Transaction ID in XA parlance).
Transaction Manager (TM)

A transaction manager provides an API that defines a transaction. It is responsible for committing
and rolling back transactions and performing recovery. The TM has a two-phase commit engine to

ensure that all of the RMs are consistent with each other.
Transaction Processing Monitor (TPM)

A Transaction Processing Monitor (TPM) coordinates the flow of transaction requests from one or
more APs (see above) for resources managed by one or more RMs (see above). The RMs can be

heterogeneous, and can be distributed across a network.

The TPM completes distributed transactions by coordinating commit and rollback operations. The
TM portion of the TPM is responsible for determining the timing of distributed commit and rollback

operations, that is, the TPM is responsible for controlling two-phase commit.

Because the TM manages distributed commit and rollback operations, it must be aware of, and
able to communicate directly with, all RMs. The TM uses the XA interface for this. In the case of
Altibase, the TM uses XA library functions of Altibase to control transaction processing by
Altibase.

TX Interface

An AP (see above) controls a transaction through the TM using the TX interface. An AP does not
use the XA interface directly. APs are not aware of the operations of individual transaction
branches, and application threads do not participate directly in transaction branch tasks. The
branches of a global transaction are managed on behalf of APs by the TM. APs merely request

the TM to commit or roll back entire global transactions.

4.1.2 XA Structure

As shown in the following diagram, the entities involved in a distributed transaction include one or
more APs (Applications), the TM (Transaction Manager), and one or more RMs (Resource Man-

agers).

XA Interface 35

Figure 4-1 XA Structure

Mative
Interface

™

XA Interface
= AP AR Application that provides the functions reguired by the end user
" RM : a provider of stored information that is connected to a network

" TM : The entity responsible for assigning Transaction 1Ds and commitiing
and ralling back global transactions

If an AP announces the start of a distributed transaction to the TM using TX interface, the TM
determines which RMs (databases) are involved in the distributed transaction. The TM internally
generates XIDs to identify the transaction branches that are to be executed in respective RMs,
and then calls XA interface with the XIDs to the RMs.

The RMs (i.e. database nodes) then start to process the transaction branches corresponding to

the respective XIDs.

To terminate the transaction, the AP calls the TM via the TX interface. The TM then uses the XA
interface to instruct the RMs on which the branches of the distributed transaction are running to

either commit or roll back their respective transaction branches.

4.1.3 XA and 2PC (Two-Phase Commit)

The XA Interface of Altibase supports 2PC (Two-Phase Commit) transaction processing.

Two-phase commit consists of separate prepare and commit steps.

In the prepare step, which is the first step of 2PC, the TM queries all database nodes (RMs) par-
ticipating in a distributed transaction to determine whether it is possible to commit the transaction.
If an individual RM is able to commit the transaction branch that has been assigned to it, it sends a
message to the TM indicating that it is in a “prepare” state. If, however, an RM is not able to
commit its transaction branch, it sends a corresponding message to the TM so that the transaction

can be rolled back.

In the commit step, which is the second step of 2PC, the TM waits until it has received “prepare”

acknowledgements from all RMs. If it receives such acknowledgements from all RMs, it sends an

36 Application Program Interface Users’ Manual

instruction to all RMs to commit the transaction. However, if there is even one RM that has not
sent a “prepare” acknowledgement, the TM sends an instruction to all RMs to roll back the trans-

action.

4.1.4 xa_switch_t Structure

Every RM has a switch that contains various information about the RM, including its entry points.

This information is used by the TM. The structure of an RM's switch is known as xa_switch _t.

In Altibase, the name of the xa_switch_t is altibase_xa_switch. Its structure is as follows:

struct xa_switch_t {

char name[RMNAMESZ]; /* name of resource manager */

long flags; I* resource manager specific options */
long version; [* must be 0 */

int (*xa_open_entry)(char *, int, long); [*xa_open fn pointer*/
int (*xa_close_entry)(char *, int, long); [*xa_close fn pointer*/

int (*xa_start_entry)(XID *, int, long); [*xa_start fn pointer*/

int (*xa_end_entry)(XID *, int, long); /*xa_end fn pointer*/
int (*xa_rollback_entry)(XID *, int, long); I*xa_rollback fn pointer*/
int (*xa_prepare_entry)(XID *, int, long); [*xa_prepare fn pointer*/
int (*xa_commit_entry)(XID *, int, long); [*xa_commit fn pointer*/
int (*xa_recover_entry)(XID *, long, int, long);/*xa_recover fn pointer*/
int (*xa_forget_entry)(XID *, int, long); [*xa_forget fn pointer*/

int (*xa_complete_entry)(int *, int *, int, long);/*xa_complete fn pointer*/

I3

4.1.5 The XA Library

No additional library is required in order for applications to connect to Altibase using the Altibase
XA. The required functionality is included in the odbccli library. All that is needed in order to use
the XA-related functionality with Altibase is to link the XA-dependent applications with the
libodbccli.a library file.

XA Interface 37

4.2 The XA Interface

The XA Interface is the two-way interface that sits between the TM and the RMs.

This interface consists of xa_ routines, which the TM uses to control RMs so that it can execute

global transactions, and ax_ routines, which allow the RMs to make requests to the TM.

Note: Because Altibase does not support dynamic registration, each RM (Alfibase database) must

be called with xa_start before the start of a transaction.

4.2.1 XA Functions

In Altibase, the XA-related functions are provided in altibase_xa_switch, which is Altibase's imple-

mentation of xa_switch_t.

Table 4-1 XA Interface

XA Interface Description

Xa_open This is used to connect to an RM.

xa_close This is used to close a connection with an RM.

xa_start This is used to start a new transaction branch or restart an existing one, and to

link the branch to a given XID.

xa_end This is used to end an association with a transaction branch.

xa_rollback This is used to roll back a transaction branch corresponding to a given XID.
Xa_prepare This is used to prepare a transaction branch to be committed.

Xa_commit This is used to commit a transaction branch.

Xa_recover This is used to show a list of XIDs corresponding to transactions that have been

prepared, heuristically committed, or heuristically rolled back.

xa_forget This is used to instruct an RM to discard information about a heuristically com-
pleted transaction branch.

4.2.1.1 xa_open

This is used to connect to an RM.

38 Application Program Interface Users’ Manual

int xa_open(char *xa_info, int rmid, long flags);

xa_info is a null-terminated character string that contains information about the server. Its maxi-
mum length is 256 bytes. It has the same format as the parameters to the SQLDriverConnect func-
tion, and has the additional parameters XA_NAME and XA_LOG_DIR. For detailed information
about the other parameters, please refer to the description of the SQLDriverConnect function in the

ODBC Reference.
NAME=val ue; NAME=val ue; NAME=val ue;
Example :
DSN=127.0.0.1;UID=SYS;PWD=MANAGER;XA_NAME=connl

Table 4-2 Additional XA Interface Parameters

XA

Parameter Description

XA NAME This is the name that is used by the Altibase Precompiler to identify the connec-
tion. If this value is omitted when writing an application with the Altibase
Precompiler, the default connection will be used. If a name is specified here, it
can be used in the AT clause of a subsequently executed SQL statement. This

value is specified in this way:
XA_NAME=connl

XA _LOG_DI | This is used to specify the directory in which information about Altibase XA li-
R brary errors is logged. If the $ALTIBASE_HOME environment variable has been
set, then the default value of XA _LOG_DIR is $ALTIBASE_HOME!/trc. If
$ALTIBASE_HOME has not been set, the default is the current directory.

rmid is used to specify an identifier for the server to be accessed. This can be set to any arbitrary

value.
If flags is not set to any other value, it must be set to the following value:

e TMNOFLAGS

4.2.1.2 xa_close

This terminates the connection to the specified RM and returns XA_OK.
int xa_close(char *xa_info, int rmid, long flags);

xa_info is a null-terminated character string that contains information about the server. Its maxi-

mum length is 256 bytes.

Note: XA_OK is returned even ifxa_close is executed on a connection that is already closed.
flags has no specific purpose in this function, and must be set to the following value:

e TMNOFLAGS

XA Interface 39

4.2.1.3 xa_start

This is used to start the execution of a transaction branch. XID is the identifier of a global transac-

tion.

int xa_start(XID *xid, int rmid, long flags);

flags can be set to one or more of the following values. In order to specify multiple flags, delimit

them with a single vertical bar (“|").

TMRESUME

This is used to resume execution of a previously suspended transaction branch.

TMNOWAIT
If the execution of xa_start is blocked, this specifies that XA_RETRY is to be returned

without waiting.

TMASYNC
This specifies that the transaction branch is to be executed in asynchronous mode (not

supported in Altibase).

TMNOFLAGS

If flags is not set to any other value, it must be set to this value.

TMJOIN
This specifies that the transaction branch is to be connected to an existing transaction

branch.

4.2.1.4 xa_end

This is used to terminate the execution of a transaction branch.

int xa_end(XID *xid, int rmid, long flags);

flags can be set to one or more of the following values:

TMSUSPEND

This specifies that execution of the transaction branch is to be merely suspended, rather
than permanently terminated. Execution of this transaction branch can be resumed later
using xa_start with the TMRESUME flag.

TMSUCCESS
This is used to specify successful termination of a transaction branch. It can't be used
together with TMSUSPEND or TMFAIL.

TMFAIL

This is used to specify abnormal termination of a transaction branch. The status of the

40 Application Program Interface Users’ Manual

transaction branch becomes “rollback only”. It can't be used together with TMSUSPEND
or TMSUCCESS.

4.2.1.5 xa_rollback

This is used to roll back the operations performed by the transaction branch.

int xa_rollback(XID *xid, int rmid, long flags);
flags can be set to one of the following values:

TMASYNC

This specifies that the transaction branch is to be rolled back in asynchronous mode (not
supported in Altibase).

TMNOFLAGS
If flags is not set to TMASYNC, it must be set to this value.

4.2.1.6 xa_prepare

When using the two-phase commit protocol, this is executed before committing or rolling back a

transaction.
int xa_prepare(XID *xid, int rmid, long flags);
flags can be set to one of the following values:

* TMASYNC
(not supported in Altibase)

e TMNOFLAGS
If flags is not set to TMASYNC, it must be set to this value.

xa_prepare can return the following values:

e XA_RDONLY
This is returned when the transaction doesn't change any of the data on the RM (i.e.

DBMS). The transaction does not need to be committed or rolled back.

« XA_OK

This is returned when the prepare task is performed normally.

4.2.1.7 xa_commit

This is used to commit a particular transaction branch.

int xa_commit(XID *xid, int rmid, long flags);

flags can be set to either of the following values:

XA Interface 41

« TMONEPHASE

This is set to specify one-phase commit.

e TMNOFLAGS

If flags is not set to any other value, it must be set to this value.

4.2.1.8 xa_recover

This obtains a list of the XIDs corresponding to branch transactions that are in a prepared state on
an Altibase server.
int xa_recover(XID *xids, long count, int rmid, long flags);

The return value indicates the number of XIDs that were recovered. The count parameter is used

to set the maximum number of XIDs that fit into the xids array.
flags can be set to one or more of the following values:

e TMSTARTRSCAN

For more information, please refer to the XA Specification documentation.

» TMENDRSCAN

For more information, please refer to the XA Specification documentation.

e TMNOFLAGS
XIDs are returned starting at the current cursor position.
4.2.1.9 xa_forget

This instructs the Altibase server (i.e. the RM) to stop managing a heuristically completed trans-

action branch.

int xa_forget(XID * xid, int rmid, long flags);
flags has no specific purpose in this function, and must be set to the following value:

e TMNOFLAGS

4.2.1.10 xa_complete

When operating in asynchronous mode, this is used to determine whether to keep waiting for an

operation to terminate. This is not supported in Altibase, and thus an error will always be returned.

42 Application Program Interface Users’ Manual

4.3 Using XA

This section describes the basic procedures for using ODBC, APRE and JDBC in an XA envi-

ronment.

4.3.1 Executing ODBC/XA

Xa_open

This is used to connect to the specified server.

SQLAllocHandle

This is used to create the connection and environment handles for connecting via ODBC.

SQLSetConnectAttr

This is used to associate the connection handle with the XA connection.

SQLConnect

SQLConnect does not actually establish a physical connection between the TM and the
RM, because that is accomplished by calling xa_open. SQLConnect merely changes the
internal state of the connection within ODBC. This is a necessary step in order to be able

to perform DML operations using ODBC.

xa_start
This is used to commence execution of the transaction branch corresponding to the

given XID.

executing SQL statements
Here, operations such as SQLPrepare and SQLEXxecute are performed. If an attempt is

made to execute a commit statement here, the server will return an error message.

xa_end

This is used to terminate execution of a transaction branch.

Xa_prepare

This is used to prepare a transaction branch for commit.

Xa_commit

This is used to commit a transaction.

SQLDisconnect
This is used to switch the internal state to disconnected. However, the physical connec-

tion established by XA remains active.

xa_close

This is used to close the XA connection.

XA Interface 43

4.3.1.1 SQLSetConnectAttr

Calling SQLSetConnectAttr enables an XA connection to use an ODBC connection, so that an ap-

plication can access a distributed transaction via ODBC.

The following parameters are provided to enable an XA connection to be configured using
SQLSetConnectAttr:

SQLRETURN SQLSetConnectAttr (
SQLHDBC hdbc,
SQLINTEGER fAttr,
SQLPOINTER vParam,
SQLINTEGER sLen);

fAttr=ALTIBASE_XA_RMID

Setting the fAttr parameter to ALTIBASE_XA_RMID enables the connection specified
using the hdbc parameter to use a specified XA connection. Detailed information about
the XA connection is set by specifying a pointer for the vParam parameter, which is de-

scribed below.

vParam

This must be set to the rmid value that was specified when a connection was established
using xa_open.

To establish an XA connection with a server without specifying a value for rmid, use one

of the following settings for the fAttr parameter:

fAttr=SQL_ATTR_ENLIST_IN_DTC or SQL_ATTR_ENLIST_IN_XA
Setting the fAttr parameter to SQL_ATTR_ENLIST_IN_DTC or
SQL_ATTR_ENLIST_IN_XA associates the current database connection with the last XA

connection.

4.3.2 Executing APRE/XA

4.3.2.1 How to Author an Application depending on the Setting of XA_NAME in
Xa_open

In XA applications, a cursor is valid only for a single transaction. This means that a cursor must be

opened after the start of execution of a transaction, and must be closed before the transaction is

completed (i.e. committed or rolled back).

1.1.1.1.1 How to Author an Application when Using the Default Connection

If it is desired to use the default connection, the XA_NAME keyword must not be present in xa_info,

which is the character string parameter of xa_open that contains the connection information. An

example of xa_info without XA_NAME is shown below:

DSN=127.0.0.1;UID=SYS;PWD=MANAGER

44 Application Program Interface Users’ Manual

It is therefore not possible to use the AT clause when executing SQL queries. The following query

is acceptable because it does not contain an AT clause:

EXEC SQL UPDATE emp SET empno = 5;

1.1.1.1.2 How to Author an Application when Using XA_NAME to Specify One or More Connections

If it is desired to specify a connection when using APRE to author an application, the XA_NAME

keyword and a corresponding value must be present in the xa_info connection character string

parameter of xa_open. An example of a valid keyword/value pair is shown below:
XA_NAME=connl

It is possible to write an application that uses a default connection and one or more additional

connections specified using XA_NAME. This is accomplished as shown below.

If, for example, the names of the connections specified using XA_NAME are conn1 and conn2, the

value of open_string in the TM (Transaction Manager) environment settings would be as follows:

DSN=127.0.0.1;UID=SYS;PWD=MANAGER;XA_NAME=connl
DSN=127.0.0.1;UID=SYS;PWD=MANAGER;XA_NAME=conn2
DSN=127.0.0.1;UID=SYS;PWD=MANAGER

This permits the application to execute SQL statements that contain the AT clause, thereby ac-
cessing multiple servers, as shown below:
EXEC SQL AT connl UPDATE emp SET empno = 5;

EXEC SQL AT conn2 UPDATE emp SET empno = 5;
EXEC SQL UPDATE emp SET empno = 5;

4.3.3 Executing JDBC/XA

The XA classes that are defined by the jdbc driver of Altibase are as shown below:

Altibase.jdbc.driver. ABXADataSource
Altibase.jdbc.driver. ABXAResource
Altibase.jdbc.driver.XID

The ABXADataSource class is the only one that the user accesses directly. The user does not

need to directly access the other classes, as they are implemented in the JTA interface class.

1. Create an ABXADataSource Object
ABXADataSource xaDataSource = new ABXADataSource();
xaDataSource.setUrl(args[0]);

xaDataSource.setUser("SYS");
xaDataSource.setPassword("MANAGER");

2. Create an XAConnection Object
Create an XAConnection object by calling the getXAConnection method in the XADataSource

class.

XAConnection xaConnection = xaDataSource.getXAConnection("SYS", "MANAGER");

XA Interface 45

3. Create an XAResource Object
Create an XAResource object by calling the getXAResource method in the XAConnection

class.

XAResource xaResource = xaConnection.getXaResource();

4. Create a Connection Object
Create a connection object to use for executing SQL statements by calling the getConnection

method in the XAConnection class.

Connection connl = xaConnection.getConnection();

5. Use the XAResource Object to Execute XA Functions
XA functions such as xa_start and xa_end can be executed using the methods in the

XAResource class.

xaResource.start(xid, XAResource. TMNOFLAGS);

6. Execute SQL Statements using the Connection Object
Statement stmt = conn.createStatement();

int cnt = st
mt.executeUpdate("insert into t1 values (4321)");

4.3.4 XA Transaction Control

This section describes how to control transactions in an Altibase XA environment.

When using the XA library, the SQL COMMIT and ROLLBACK statements are not used to commit
and roll back transactions. Instead, the users must use the TX interface that is provided by the TM
in application programs, as shown below.

The TM typically controls a transaction using the XA interface.
Table 4-3 The TX Interface

TX Interface Entry Point Description
tx_open This logs on to an RM.

tx_close This logs off from an RM.

tx_begin This starts execution of a new transaction.
tx_commit This commits a transaction.

tx_rollback This rolls back a transaction.

46 Application Program Interface Users’ Manual

The process of calling the TX and XA interfaces is as shown in the following diagram:

Figure 4-2 The Process of Calling TX and XA Interfaces

XA Interface

AP ™
tx_open Xa_open
tx_begin i xa_start

tx_commit xa_end -

g > xa_prepare
xa_commit ALTIBASE

tx_close
, R xa_close

xa_recover

"l xa_commit

(xa_rollback,
xa_forget)

Native Calls *

A TPM (Transaction Processing Monitor) application has a client/server structure in which a client
requests a service provided by an application server. Service is divided into logical work units.

When Altibase is used as the RM, a logical work unit typically consists of a set of SQL statements.

4.3.4.1 Example

In the following example, it is assumed that the application server has already logged on to the
TPM system.

1.1.1.1.3 Starting a Transaction on an Application Server

The following example shows the start of a transaction on an application server.
Ex) Client:

tpm_service("SERVICEL");

EXx) Server:

SERVICEL()
<get service specific data>
tx_begin();
EXEC SQL UPDATE....;
tpm_service("SERVICE2");

tx_commit();
<return service status back to the client>

1.1.1.1.4 Starting a Transaction on a Client

The following example shows the start of a transaction on a client.

Ex) Client:

XA Interface 47

tx_begin();
tpm_service("SERVICEL");
tmp_service("SERVICE2");
tx_commit();

Ex) Server:

SERVICEL()
{

<get service specific data>
EXEC SQL UPDATE...;
<return service status back to the client>

}
SERVICE2()

<get service specific data>
EXEC SQL UPDATE...;
<return service status back to the client>

}

4.3.5 Changing an Existing Application into a TPM Application

To change an existing application (Precompiler or ODBCCLI application) into a TPM (Transaction
Processing Monitor) application that uses the XA library of Altibase, follow the procedure outlined

below:

1. Convert the application into one that incorporates a “service” framework.
Here, the term “framework” means one in which a client requests a service from an applica-
tion server. In some TPMs, the tx_open and tx_close functions must be explicitly called, while

in other TPMs, the logging on and off takes place implicitly.

2. General connection statements must be changed into a TPM-compatible form. For example,
when working with APRE, replace the EXEC SQL CONNECT statement with a call to tx_open,
and when working with ODBCCLI, replace the SQLDriverConnect statement with calls to both
tx_open and SQLConnect.

The ODBCCLI SQLDriverConnect statement must be replaced by both tx_open and
SQLConnect. Although the actual connection is achieved using tx_open, the SQLConnect task
is necessary in order for it to be possible to make a connection internally within ODBC. For
more detailed information, please refer to 4.3.1 Executing ODBC/XA, which outlines the re-

quired tasks in sequence.

3. Disconnection statements must also be changed into a TPM-compatible form. Replace the
EXEC SQL DISCONNECT statement (when working with APRE) or the SQLDisconnect

statement (when working with ODBCCLI) with a call to tx_close.

4. Commit and rollback statements must also be changed into a TPM-compatible form. When
working with APRE, replace the EXEC SQL COMMIT statement with a call to tx_commit and
the EXEC SQL ROLLBACK statement with a call to tx_rollback. When working with ODBCCLI,

48 Application Program Interface Users’ Manual

replace the SQLEndTran statement with a call to either tx_commit or tx_rollback, as appropri-

ate. Use tx_begin to initiate the execution of a transaction.

5. Before terminating a transaction, the application must exit the state in which it is ready to

fetch records. That is, after fetching data using a cursor and before ending the transaction,

the CLOSE RELEASE statement must be used to close the cursor and free all associated

resources.

Altibase Statement

TPM Functions

CONNECT

tx_open

Implicit commencement of transaction

tx_begin

Executing SQL statements

Service that executes the SQL statements

COMMIT tx_commit
ROLLBACK tx_rollback
DISCONNECT tx_close
SET TRANSACTION READ ONLY Not allowed

XA Interface 49

4.4 Limitations when using XA

The use of XA is limited in the following ways:
Limitations when using XA
Limitations related to Transaction Branches
No Support for Association Migration
No Support for Asynchronous Calls

No Support for Dynamic Registration

4.4.1 Limitations on Use of SQL

4.4.1.1 Rollback and Commit

Because global transactions are managed by the TM, the Altibase transaction control statements
COMMIT and ROLLBACK must not be used within an XA application to control global transac-

tions.

Instead, tx_commit and tx_rollback must be used to complete global transactions. This means that
the EXEC SQL ROLLBACK and EXEC SQL COMMIT statements can't be used within applica-
tions authored using APRE. Similarly, SQLEndTran can't be used within an ODBCCLI application

to commit or roll back a transaction.

44.1.2 DDL

Because DDL SQL statements are implicitly committed, they can't be used within XA applications

of Altibase.

4.4.1.3 The AUTOCOMMIT Session Property

Because global transactions execute in non-autocommit mode, the AUTOCOMMIT property can't

be changed using the ALTER SESSION SET AUTOCOMMIT = TRUE statement.

4.4.1.4 SET TRANSACTION

The Altibase SET TRANSACTION { READ ONLY | READ WRITE | ISOLATION LEVEL ... } data

control statement can't be used within an XA application of Altibase.

50 Application Program Interface Users’ Manual

4.4.1.5 Connection or Disconnection with EXEC SQL Statements

The EXEC SQL CONNECT and EXEC SQL DISCONNECT statements can't be used to establish or

terminate connections in applications authored using APRE.

4.4.2 Limitations related to Transaction Branches

Multiple application threads participate in the execution of a single global transaction. These

threads have either tightly-coupled or loosely-coupled relationships between them.

Threads that have a tightly-coupled relationship share a common resource. In addition, an RM
handles a pair of coupled threads as a single entity. The RM must ensure that tightly-coupled
threads do not reach a resource deadlock in a transaction branch. However, there is no need to
provide this guarantee for loosely-coupled threads. The RM handles loosely-coupled transaction

branches as though they were different global transactions.

If the TM assigns a new XID (branch qualifier) to a thread, this thread has a loosely-coupled rela-
tionship with the other threads in the same branch. The RM handles this thread as though it were

a separate global transaction.

In contrast, if the TM joins a branch with an XID, that is, assigns an existing XID (branch qualifier)
to a thread, the thread has a tightly-coupled relationship with the other threads sharing this branch.
The RM regards tightly-coupled threads as one object, and must guarantee that a resource

deadlock does not occur between tightly-coupled threads.

4.4.3 No Support for Association Migration

Association migration (in which the TM associates a suspended branch with another branch and

resumes its execution) isn't supported in Altibase.

4.4.4 No Support for Asynchronous Calls

Asynchronous XA calls are not supported in XA applications of Altibase.

4.4.5 No Support for Dynamic Registration

The Altibase server does not support dynamic registration. Only static registration is supported. In
so-called “dynamic registration”, an RM registers a global transaction with the TM before it starts

executing a transaction branch.

In static registration, it is necessary to use xa_start to tell an RM that a transaction has com-

menced.

XA Interface 51

4.4.6 Server Shutdown

4.4.6.1 Abnormal Server Shutdown

Suppose that the server terminates abnormally or that the shutdown abort command is executed on
the server, and that there are one or more transactions that are in a prepared state at that time.
When the server is subsequently restarted, recovery tasks will be performed, after which it will be

possible to execute these transactions using the xa_recover statement.

4.4.6.2 Normal Server Shutdown

If the server is shut down normally using the shutdown immediate or shutdown normal command
while there are one or more transactions in a prepared state, Altibase aborts these transactions in
order to shut down. Recovery tasks are then performed when the server is subsequently restarted,
and these prepared transactions are restored to their previous state. In contrast, if there are no
prepared transactions when the server is shut down normally, recovery tasks will not be performed

when the server is restarted.

52 Application Program Interface Users’ Manual

4.5 JDBC Distributed Transactions

Altibase JDBC can be used to implement distributed transactions, as it complies with the OpenXA
standards related to connection pooling and distributed transaction processing, as set forth in the
JDBC 2.0 extension API. The jdbc driver package of Altibase includes classes for realizing all of

the distributed transaction processing functionality in accordance with the XA standard.

4.5.1 JTA (Java Transaction API) and Application Server

The method by which an application processes a distributed transaction through an application

server is shown in the following figure:

Figure 4-3 Distributed Transaction Processing

Application Transaction Resource
Server I Manager I Adapter

Application —p

The application server supports the use of XAConnections that make it possible to connect to

respective resources.

An application connects to an application server, establishes a connection, and executes queries.
The application server manages the transaction using the TM (Transaction Manager). The TM

accesses required resources using a Resource Adapter provided by the DBMS vendor.

When the resource to which a connection is to be established using the Resource Adapter is a
DBMS, the JDBC driver package can be used as the Resource Adapter. A Resource Adapter has
4 classes, namely the ResourceFactory, Transactional Resource (XAConnection), Connection,

and XAResource classes.

The ResourceFactory class is used to create an XAConnection object. In the case of JDBC, the
factory that is used to create XAConnection objects is XADataSource. The application server ob-
tains an XAConnection object (for connecting to a DBMS) from the XADataSource factory. The
application server then obtains an instance of a connection object (java.sqgl.Connection), to be
used by the application, and an instance of a XAResource object, to be used by the TM, from the

XAConnection object.

4.5.2 XA Components

In this section, the standard XA interfaces provided in the JDBC 2.0 Optional Package are ex-

plained, along with the Altibase classes in which they are implemented.

XA Interface 53

45.2.1 XADataSource Interface

The javax.sql.XADataSource interface is a factory for creating XAConnection objects. This inter-

face's getXAConnection method returns an XAConnection object.

public interface XADataSource

{
XAConnection getXAConnection() throws SQLEXxception;

XAConnection getXAConnection(String user, String password)
throws SQLEXxception;

}...
Altibase.jdbc.driver. ABXADataSource is the class in which the XADataSource interface is imple-
mented, and is included in the JDBC driver provided by Altibase. It is derived from the
Altibase.jdbc.driver.ABConnectionPoolDataSource class. The ABConnectionPoolDataSource

class is in turn derived from the Altibase.jdbc.driver.DataSource class.

Therefore, the ABXADataSource class includes all the connection properties that the DataSource

and ABConnectionPoolDataSource classes have.

Figure 4-4 ABXADataSource Class

DataSource
<Interface>
T XADataSource
A

ABConnectionPoolDataSource

— 4

ABXADataSource

The getXAConnection method of the ABXADataSource class returns an instance of the
XAConnection type. Because this is actually an instance of the ABPooledConnection class, the

ABPooledConnection class is the implementation of the XAConnection interface.

An XA data source can be registered in the Java Naming and Directory Interface (JNDI) and used.

4.5.2.2 XAConnection Interface

The XAConnection interface is a child interface of the PooledConnection interface. It includes the
getConnection, close, addConnectionEventListener and removeConnectionEventListener methods.
public interface XAConnection extends PooledConnection

{

javax.jta.xa.XAResource getX AResource() throws SQLException;

-

An XAConnection instance establishes a physical connection to a database. It is used to manage

a distributed transaction, and to obtain an XAResource object that plays a role in managing the

54 Application Program Interface Users’ Manual

distributed transaction. In the JDBC driver of Altibase, the instance of the
Altibase.jdbc.driver.ABPooledConnection class is the actual instance of the XAConnection type.
The getXAResource method of the ABPooledConnection class returns an instance of the

ABXAResource object. The getConnection method returns an instance of the ABConnection object.

Figure 4-5 ABPooledConnection Class

<Interface>
PooledConnection

T

<Interface>
XAConnection

A

ABPooled Connection

The ABConnection instance returned by the getConnection method acts as a temporary handle for
the physical database connection. It acts like a normal connection until the transaction branch
starts participating in the global transaction. At the moment that the transaction branch partici-
pates in the global transaction, AUTOCOMMIT becomes false. After the global transaction ter-
minates, AUTOCOMMIT is restored to its original state, that is, its state prior to the start of the

global transaction.

Each time an XAConnection instance's getConnection method is called, it returns a new instance of
a Connection object. At this time, if any previous connection instance that was created by the
same XAConnection instance still exists, it is closed. It is nevertheless advisable to explicitly close
a previous Connection instance before opening a new one. Calling the close method of an

XAConnection instance closes the physical connection to the database.

4.5.2.3 XAResource Interface

The TM uses instances of the ABXAResource object to coordinate all of the transaction branches.
An instance of the Altibse.jdbc.driver. ABXAResource type is an instance of the class in which the

javax.transaction.xa.XAResource interface is implemented.

Figure 4-6 ABXAResource Class

<Interface>
javax. transaction.xa.XAResource

A

ABXAResource

XA Interface 55

Whenever the getXAResource method of the ABPooledConnection class is called, the JDBC driver
of Altibase creates and returns an instance of the ABXAResource class, and associates the
ABXAResource instance with a Connection instance. This is the Connection object that is used by

the transaction branch.

The ABXAResource class has several methods for controlling a transaction branch of a distributed
transaction. A TM receives an instance of the ABXAResource class from a middle-tier component

such as an application server. The ABXAResource class exposes the following methods:

void start(Xid xid, int flags)

void end(Xid xid, int flags)

int prepare(Xid xid)

void commit(Xid xid, boolean onePhase)
void rollback(Xid xid)

public void forget(Xid xid)

public Xid[] recover(int flag)

For more detailed information, please refer to the description of the

javax.transaction.xa.XAResource class in the Java API Specifications.

4.5.2.4 The Xid interface

The TM creates instances of the Xid interface and uses them to coordinate the branches of a dis-
tributed transaction. Each transaction branch is assigned a unique transaction ID, which includes

the following information:
Format identifier
Global transaction identifier
Branch qualifier

In Altibase, the javax.transaction.xa.Xid interface is implemented as the XID class in the

Altibase.jdbc.driver package.

Note: Alfibase.jdbc.driver. XID does not need to be used fo make ABXAResource calls. Any class

in which the javax.transaction.xa.Xid interface is implemented can be used for this.

4.5.3 Error Handling

When errors occur, XA-related methods throw the ABXAException class. The ABXAException

class is a subclass of the javax.transaction.xa.XAException class.

4.5.4 Making XA Settings in Application Servers

4.5.4.1 Making XA Settings in WebLogic

1. Inthe WebLogic console, expand Services -> JDBC -> Connection Pools -> Configure a new
JDBC Connection Pool, and then enter the required JDBC connection information. (The re-

quired information is shown in [Figure 6-6].)

56 Application Program Interface Users’ Manual

Table 4-4 Connection Information for Non-XA and XA Environments

NON-XA

XA

URL

jdbc:Altibase://[ip]:[port]/dbname

jdbc:Altibase://[ip]:[port]/dbname

Driver Classname

Altibase.jdbc.driver.AltibaseDriver

Altibase.jdbc.driver. ABXADataSource

Properties

User=[username]

User=[username]

Figure 4-7 Entering

workshop> JDBC Connection Pools> altiXAPool

Connected to : localhost :7001 | You are logged in as

Configuration

weblogic | Logout

Target and Deplo Monitoring | Control | Testing | Notes

General || Connections

& URL:

& Driver Classname:

& Password:

Confirm Password:

The name of this JDBC connection pool.

user=gsys

& Properties:

This page allows you to define the general configuration of this JDBC connection pool-

Name: altiXAPool

jdbc: Altibase://192.166.1.31: 25226/
The URL of the database to connect to. The format of the URL varies by JDBC driver.

Altibase.jdbc. driver. ABXaDataSour

The database account password used in the physical database connection.

JDBC Connection Information

The full package name of JDBC driver class used to create the physical database connections in the connection pool. (Note that
this driver class must be in the classpath of any server to which it is deployed.)

The list of properties passed to the JDBC driver that are used to create physical database connections. For example:
server=dbserver]. List each property=value pair on a separate line.

2. Create a DataSource using the newly created Connection Pool. Expand Ser-

vices->JDBC->Data Sources and choose Configure a new JDBC Data Source.

Enter the Name and JNDI Name and check “Honor Global Transactions”. For “Pool Name”,

enter the name of the pool created in the first step in the window shown in [Figure 6-7].

Note: /n versions of WebLogic prior fo version 8.1, a new DataSource is created by expanding
Services->JDBC->XA Data Sources.

XA Interface 57

Figure 4-8 Creating a Data Source
workshop> JDBC Data Sources> altiTXD$ y=r = BEA

e

»
z)
4 e

Connected to : localhost :7001

I

Target and Deploy | Notes |

This page allows you to define the configuration for this JOBC data source.

Name: altiTXDS

You are logged in as : weblogic | Logout

The name of this JDBC data source.

A\ INDI Name: |aliTXDS
The JNDI path to where this JDBC data source is bound.
Pool Name: \fliﬁik{chpﬁi i[

The JDBC connection pool associated with this data source. The connection pool you select is used to supply database
connections to client applications that request a connection from this data source.

Advanced Options [Show]

Apply

4.5.4.2 Weblogic Application Example

/I step 1. INDI Lookup and get UserTransaction Object
Context ctx = null;
Hashtable env = new Hashtable();

/I Parameter for weblogic
env.put(Context.INITIAL_CONTEXT_FACTORY,
"weblogic.jndi.WLInitialContextFactory");
env.put(Context. PROVIDER_URL,"t3://localhost:7001");
env.put(Context. SECURITY_PRINCIPAL,"weblogic");
env.put(Context. SECURITY_CREDENTIALS,"weblogic");

ctx = new InitialContext(env);
System.out.printIn("Context Created :"+ctx);

Il step 2. get User Transaction Object

UserTransaction tx =
(UserTransaction)ctx.lookup("javax.transaction.UserTransaction");

// step 3 start Transaction

System.out.printIn("'Start Transaction :"+tx);

tx.begin();

try{
Il step 4. executing query
I/ step 4-1. get Datasource
DataSource xads1 = (DataSource)ctx.lookup("altiTXDS");

4.5.4.3 Making XA Settings in JEUS

Here is how to make the basic settings to create a JDBC data source in JEUS.

1. Under “JEUS Manager Resource(s)”, choose “JDBC” and then select “Create New JDBC

Data Source”.

2. Enter the following information in the basic setup window that appears.

58 Application Program Interface Users’ Manual

DBMS : Other

Available Data Source :

Data Source Class Name: Altibase.jdbc.driver. ABXADataSource
Data Source Type : XADataSource

3. Enter appropriate values for Database Name, Port Number, Server Name, User and Pass-

word.
Figure 4-9 Setting a Data Source in JEUS
o . JDBCUOIOIE AA AHIA D2 43
R Export Hame altTXDS

OI0IE £22] o1 012,

Vendor 3,O,ther,s j’
JoeC ECHIIH #MEHE 015,

Data Source Class Name * | Aibase idbe. driver ABXADataSource
JosC ECHIIHE HIOIE &4 SHAS 012, 2R B2 EEets 2HEEH ZEH MO0k T

Data Source Type rXADataSource v]
GIOIE 422 EF.

Database Name

mydb
GIOIEIHIOI A2 0| 2. Orade?| 22 database?| SID.

Port Number 25226

I

Database listener2] ZE H

Server Name 192.168.1.31
Database J} &8ik|= TAE 0|E E= 1P,

User SYS
DB AFEAIID. EHMA HE| S5 oM S25H AEHE 21110 SO ST

Password

DB AH2A12] password.

Vplain f:' sssssse

4.5.4.4 JEUS Application Example

/l step 1. INDI Lookup and get UserTransaction Object
Context ctx = null;
Hashtable env = new Hashtable();

[/ Parameter for weblogic

env.put(Context.INITIAL_CONTEXT_FACTORY, "jeus.jndi.JNSContextFactory");
env.put(Context. URL_PKG_PREFIXES, “jeus.jndi.jns.url™);

env.put(Context. PROVIDER_URL, "127.0.0.1");

env.put(Context. SECURITY_PRINCIPAL,"jeus");

env.put(Context. SECURITY_CREDENTIALS,"jeus");

ctx = new InitialContext(env);
System.out.printIn("Context Created :"+ctx);

I/ step 2. get User Transaction Object
UserTransaction tx =
(UserTransaction)ctx.lookup("java:comp/UserTransaction");

// step 3 start Transaction
System.out.printIn("Start Transaction :"+tx);

XA Interface

tx.begin();

try{
/l step 4. doing query
/I step 4-1. get Datasource
DataSource xads1 = (DataSource)ctx.lookup(“altiTXDS");

4.5.5 Example
The following example illustrates how to implement distributed transactions using Altibase XA.

In this example, the operations are executed in the following order:
1. Start transaction branch #1.

2. Start transaction branch #2.

3. Execute DML operations on branch #1.

4. Execute DML operations on branch #2.

5. End transaction branch #1.

6. End transaction branch #2.

7. Prepare branch #1.

8. Prepare branch #2.

9. Commit branch #1.

10. Commit branch #2.

import java.sql.*;

import javax.sql.*;

import Altibase.jdbc.driver.*;
import javax.transaction.xa.*;

class XA4

public static void main (String args [])
throws SQLException
{
try
{
String URL1 = "jdbc:Altibase://localhost:25226/mydb";
// 'You can put a database name after the @ sign in the connection URL.
String URL2 = "jdbc:Altibase://localhost:25226/mydb";

/I Create first DataSource and get connection
Altibase.jdbc.driver.DataSource adsl =

new Altibase.jdbc.driver.DataSource();
adsl.setUrl(URLZY);
adsl.setUser("SYS");

60 Application Program Interface Users’ Manual

adsl.setPassword("MANAGER");
Connection conna = ads1.getConnection();

/I Create second DataSource and get connection
Altibase.jdbc.driver.DataSource ads2 =

new Altibase.jdbc.driver.DataSource();
ads2.setUrl(URL2);
ads2.setUser("SYS");
ads2.setPassword("MANAGER");
Connection connb = ads2.getConnection();

/ Prepare a statement to create a table
Statement stmta = conna.createStatement ();

/ Prepare a statement to create a table
Statement stmtb = connb.createStatement ();

try

// Drop the test table
stmta.execute ("drop table my_table");

}
catch (SQLException e)

// Ignore an error here

}
try

/I Create a test table
stmta.execute (“create table my_table (coll int)");

}
catch (SQLException e)

/' lgnore an error here too

}
try

// Drop the test table
stmtb.execute ("drop table my_tab™);

}
catch (SQLException e)

// Ignore an error here

}
try

/I Create a test table

stmth.execute (“create table my_tab (coll char(30))");

}
catch (SQLException e)

//'Ignore an error here too

}

I/ Create XADataSource instances and set properties

ABXADataSource axdsl = new ABXADataSource();
axdsl.setUrl("jdbc:Altibase://localhost:25226/mydb");

axdsl.setUser("SYS");
axdsl.setPassword("MANAGER");

ABXADataSource axds2 = new ABXADataSource();

axds2.setUrl("jdbc:Altibase://localhost:25226/mydb");

axds2.setUser("SYS");
axds2.setPassword("MANAGER");

XA Interface

61

/I Get XA connections to the underlying data sources
XAConnection pcl = axdsl.getX AConnection();
XAConnection pc2 = axds2.getX AConnection();

Il Get the physical connections

Connection connl = pcl.getConnection();
Connection conn2 = pc2.getConnection();

/I Get the XA resources
XAResource axarl = pcl.getXAResource();
XAResource axar2 = pc2.getXAResource();

/I Create the Xids With the Same Global IDs
Xid xid1 = createXid(1);
Xid xid2 = createXid(2);

/I Start the Resources
axarl.start (xid1, XAResource. TMNOFLAGS);
axar2.start (xid2, XAResource. TMNOFLAGS));

/I Execute SQL operations using connl and conn2
doSomeWork1 (connl);
doSomeWork?2 (conn2);

/I END both the branches -- IMPORTANT
axarl.end(xid1, XAResource. TMSUCCESS);
axar2.end(xid2, XAResource. TMSUCCESS);

/I Prepare the RMs

int prpl = axarl.prepare (xidl1);

int prp2 = axar2.prepare (xid2);
System.out.printin("Return value of prepare 1 is " + prpl);
System.out.printin("Return value of prepare 2 is " + prp2);
boolean do_commit = true;

if (!((prp1 == XAResource.XA_OK) || (prpl == XAResource.XA_RDONLY)))
do_commit = false;

if (!((prp2 == XAResource.XA_OK) || (prp2 == XAResource.XA_RDONLY)))
do_commit = false;

System.out.printin("do_commit is "' + do_commit);

System.out.printin("ls axarl same as axar2 ? " + axarl.isSameRM(axar2));

if (prpl == XAResource.XA_OK)
if (do_commit)
axarl.commit (xid1, false);
else
axarl.rollback (xidl);

if (prp2 == XAResource.XA_OK)
if (do_commit)
axar2.commit (xid2, false);
else
axar2.rollback (xid2);

/I Close connections
connl.close();
connl = null;
conn2.close();
conn2 = null;

pcl.close();
pcl = null;
pc2.close();
pc2 = null;

ResultSet rset = stmta.executeQuery (“'select coll from my_table");
while (rset.next())

62 Application Program Interface Users’ Manual

System.out.printin(*Coll is " + rset.getint(1));

rset.close();
rset = null;

rset = stmth.executeQuery ("select coll from my_tab");
while (rset.next())

System.out.printIn("Coll is " + rset.getString(1));
rset.close();
rset = null;

stmta.close();
stmta = null;
stmtb.close();
stmtb = null;

conna.close();
conna = null;
connb.close();
connb = null;
} catch (SQLException sge)

sge.printStackTrace();
} catch (XAException xae)
{
System.out.printIn("XA Error is " + xae.getMessage());
}
}

static Xid createXid(int bids)
throws XAEXxception
{

byte[] gid = new byte[1]; gid[0] = (byte)9;
byte[] bid = new byte[1]; bid[0] = (byte)bids;
byte[] gtrid = new byte[4];

byte[] bqual = new byte[4];
System.arraycopy(gid,0,gtrid,0,1);
System.arraycopy(bid,0,bqual,0,1);

Xid xid = new X1D(0x1234,gtrid,bqual);
return xid;

}

private static void doSomeWork1 (Connection conn)
throws SQLEXxception
{

String sql ;

Statement stmt = conn.createStatement();
sgl = "insert into my_table values(1)";
stmt.executeUpdate(sql);

stmt.close();

}

private static void doSomeWork?2 (Connection conn)
throws SQLEXxception
{

String sql ;

Statement stmt = conn.createStatement();
sgl = "insert into my_tab values('test)";
stmt.executeUpdate(sql);

stmt.close();

XA Interface 63

4.6 How to Solve Application Problems Using XA

This section explains how to determine the cause of any XA-related errors that may arise.

4.6.1 Checking XA Tracking Information

The XA library of Altibase records information that is useful for tracing errors in a trace file. If you
open this file, you can check information such as error codes and messages. For example, if
xa_open fails, checking the tracking information will help you determine whether the reason was
that the xa_info character string has errors in it, or whether it was because the TP Manager

couldn't find an Altibase server, or whether the attempt to log on to the Altibase server failed.

4.6.1.1 XA Trace File Name and Location

altibase_xa<XA_NAME><date>.log

e XA _NAME : This is the connection name specified in the xa_info character string field
XA_NAME=value. If XA_NAME is not specified in the xa_info character string, it will be
NULL.

* Jdafe: This is the date specified in the trace file (YYYYMMDD).

If the SALTIBASE_HOME environment variable has been set, this trace file will be created in
SALTIBASE_HOME/trc. If the $ALTIBASE_HOME environment variable has not been set, the
trace file will be created in the current directory.

4.6.1.2 Example

104744.19381.1:
ulxXaOpen : XAER_RMERR : [ERR-4102E] Invalid password

"104744" is the time the log was recorded (HHMISS), "19381" is the Process ID (PID), and "1" is

the Resource Manager ID.

ulxXaOpen is the module name, XAER_RMERR is the XA error code, [ERR-4102E] is the error
code returned by the Altibase server, and "invalid password" is the error message returned by the

Altibase server.

4.6.2 Processing In-doubt Transactions

The TM is responsible for providing functionality for detecting problems that give rise to in-doubt
and pending transactions and automatically completing in-doubt transactions. The RM in which
the in-doubt or pending transaction is taking place maintains a lock on all resources associated

with the prepared transaction until the transaction has been completed and it receives an instruc-

64 Application Program Interface Users’ Manual

tion to commit the transaction.

However, if another transaction requires the data locked by an in-doubt transaction, or if a trans-
action remains in an in-doubt or pending status for an excessive amount of time, it will be neces-

sary for the DBA to manually handle the transaction.

Altibase provides the V$DBA_2PC_PENDING performance view, which displays information
about the state of in-doubt transactions so that they can be dealt with. For more information about
this and other performance views, please refer to the Alfibase General Reference.
To manually process such transactions, the DBA can forcefully commit or rollback transaction as
shown below:
COMMI T FORCE ‘global _
ROLLBACK FORCE ‘gl oba

4.6.2.1 Example

This example shows how to check the state of in-doubt transactions and manually commit a

transaction as desired.

iSQL> SELECT * FROM v$dba_2pc_pending;
LOCAL_TRAN_ID GLOBAL_TX_ID

9280 69.FAEDFAED.00000001

21315 69.FAEDFAED.00000002

2 rows selected.

iSQL> COMMIT FORCE '69.FAEDFAED.00000002";
Commit force success.

4.6.3 Checking Heuristically Completed Transactions

It is possible to check information about heuristically completed transactions. A so-called "heuris-
tically completed transaction" is a transaction that is either committed or rolled back at the discre-
tion of the RM after the RM fails to receive a transaction completion instruction (such as commit or

rollback) from the TM for whatever reason.

If an in-doubt transaction is forcibly committed or rolled back, it is said to be a heuristically com-
mitted or heuristically rolled back transaction. Information about this transaction will be visible in
the SYS_XA_HEURISTIC_TRANS_ meta table.

To delete this information, call xa_forget after the execution of xa_recover, or execute remove_xid().

4.6.3.1 Example
After the DBA commits an in-doubt transaction, information about the transaction is visible in the
SYS_XA_HEURISTIC_TRANS_ meta table.
iSQL> SELECT * FROM v$dba_2pc_pending;

V$DBA_2PC_PENDING.LOCAL_TRAN_ID
V$DBA_2PC_PENDING.GLOBAL_TX_ID

XA Interface 65

100421

69.FAEDFAED.00000001

1 row selected.

iSQL> COMMIT FORCe '69.FAEDFAED.00000001";
Commit force success.

iSQL> SELECT * FROM system_.sys_xa_heuristic_trans_;
SYS_XA_HEURISTIC_TRANS_.FORMAT_ID
SYS_XA_HEURISTIC_TRANS_.GLOBAL_TX_ID
SYS_XA_HEURISTIC_TRANS_.BRANCH_QUALIFIER
SYS_XA_HEURISTIC_TRANS_.STATUS

SYS_XA HEURISTIC_TRANS_.OCCUR_TIME

69

FAEDFAED

00000001

1

2008/08/29 10:09:53

1 row selected.

| SQL> EXEC remove_xid(‘69. FAEDFAED. 000000O01") ;
Execute success.

iSQL> SELECT * FROM system_.sys_xa_heuristic_trans_;

SYS_XA HEURISTIC_TRANS_.FORMAT_ID

SYS_XA_HEURISTIC_TRANS_.GLOBAL_TX_ID

SYS_XA_HEURISTIC_TRANS_.BRANCH_QUALIFIER

SYS_XA HEURISTIC_TRANS_.STATUS SYS_XA_HEURISTIC_TRANS_.OCCUR_TIME

No rows selected.

66 Application Program Interface Users’ Manual

5 The iLoader API

The iLoader APIThe CheckServer APl 67

51 Overview of the iLoader API

The Altibase iLoader APl is an application programming interface that lets you create applications
that use function calls to download data from, or upload data to, an Altibase database server. Data
are downloaded or uploaded in units of tables. The iLoader API provides the same functionality as
the iLoader utility. For more information about the iLoader utility, please refer to the Altibase

iLoader User’s Manual.

The following table summarizes the functions available in the iLoader API.

Function Name Purpose
altibase iloader _init Allocates an iLoader handle
altibase_iloader_final Frees a handle and all associated resources
altibase_iloader_options_init Initializes the option structure to its default values
altibase_iloader_formout Creates a table format file (FORM file)
altibase_iloader_dataout Downloads data from a table in a database and writes the data

to a file

altibase_iloader_datain Uploads data into a table in a database
CallbackFunctionName A user-defined callback function

68 Application Program Interface Users’ Manual

5.2 Using the iLoader API

5.2.1 Header Files

$ALTIBASE_HOME/include/iloaderApi.h

5.2.2 Libraries

The iLoader API library files that are required in order to develop an application that uses the
iLoader API reside in the $ALTIBASE_HOME/lib directory. The iLoader API applications must

always link with the following libraries:

e UNIX

libiloader.a, libodbccli.a

5.2.3 Samples

Sample iLoader API applications can be found in the $ALTIBASE_HOME/sample/ILOADERAPI

directory.

The iLoader APIThe CheckServer APl 69

s31Loader API Data Structures

This section describes the C types that are provided for use in applications written using the
iLoader API.

These types are:

The iLoader Handle
Error Structure

Log Structure
Option Structure

iLoader APl Enumerators

5.3.1 The iLoader Handle

The iLoader handle is an opaque data structure that is defined by the iLoader API library. It is used

to store information pertaining to the behavior of applications that use the iLoader API.

* ALTIBASE_ILOADER_HANDLE
This is an iLoader handle. The iLoader handle is primarily used when downloading data,
uploading data and creating FORM files.
The iLoader handle is allocated with altibase_iloader_init() and freed with

altibase_iloader_final().

5.3.2 Error Structure

e ALTIBASE_ILOADER_ERROR
This structure is used to store information for diagnosing errors that occur during the
execution of an application that was written using the iLoader API.

This structure is defined as follows:

typedef struct ALTIBASE_ILOADER_ERROR

{
int errorCode; /* Error Code */
char *errorState; /* SQLSTATE Code */
char *errorMessage; [* Error Message */

} ALTIBASE_ILOADER_ERROR;

70 Application Program Interface Users’ Manual

5.3.3 Log Structure

The iLoader API provides the following two structures for use in logging the progress of an iLoader

task:

* ALTIBASE_ILOADER_LOG

This structure is passed to an application's callback function every time an error occurs

during the execution of an iLoader task.

It is also passed to a callback function upon completion of an iLoader task. At this time,

the record, recordData, recordColCount, and errorMgr members are not passed.

The purpose of this structure is to report errors that occur during the execution of an

iLoader task, and to provide information about the results of execution of a task.

This structure is defined as follows:

{

char
int
int
int
int
char
int

} ALTIBASE_ILOADER_LOG;

typedef struct ALTIBASE_ILOADER_LOG

ALTIBASE_ILOADER_ERROR

tableName[50];
totalCount;
loadCount;
errorCount;
record;
**recordData;
recordColCount;
errorMgr;

Member Description

tableName This is the name of the table being uploaded or downloaded.

totalCount This is the total number of rows for which an upload or
download attempt has been made.

loadCount This is the total number of rows that have been successfully
uploaded or downloaded.

errorCount This is the number of rows that could not be uploaded or
downloaded due to the occurrence of an error.
Note that when an error occurs, this count does not include
the current error. That is, it is a count of all errors preceding
the current error.

record When an error occurs, this indicates the position of the rec-
ord that could not be uploaded or downloaded.

recordData When an error occurs, this is the data stored in the record

that could not be uploaded or downloaded.

The iLoader APIThe CheckServer APl 71

Member

Description

recordColCount

When an error occurs, this is the number of columns in the
record that could not be uploaded or downloaded.

errorMgr

When an error occurs, this is an error structure that contains
information about the error.

ALTIBASE_ILOADER_STATISTIC_LOG

This structure is periodically passed to an application's callback function during the ex-

ecution of an

iLoader task. The frequency with which it is passed is determined by the

setRowFrequency option in the Option Structure.

This structure is used to pass statistics about the execution of an iLoader task. These

statistics are:

the time at which the task started, the total number of rows to be uploaded

or downloaded, the number of rows that have been successfully uploaded or down-

loaded, and the number of rows that could not be uploaded or downloaded due to the

occurrence of an error.

This structure is defined as follows:

{

typedef struct ALTIBASE_ILOADER_STATISTIC_LOG

char
time_t
int

int

int

} ALTIBASE_ILOADER_STATISTIC_LOG;

tableName[50];
startTime;
totalCount;
loadCount;
errorCount;

Member Description

tableName The name of the table being uploaded or downloaded.

startTime This is the time at which the upload or download task started.

totalCount This is the total number of rows to be uploaded. This member is not
used when downloading data.

loadCount This is the total number of rows that have been successfully uploaded
or downloaded.

errorCount This is the number of rows that could not be uploaded or downloaded
due to the occurrence of an error.

72 Application Program Interface Users’ Manual

5.3.4 Option Structure

ALTIBASE_ILOADER_OPTION_V1
Most of the members of the ALTIBASE_ILOADER_OPTION_V1 structure correspond to

iLoader options. The corresponding option is noted in the comment following each
member. For detailed information on the iLoader options, please refer to the Altibase
iLoader User’s Manual.

The definitions of the iloBool, iloLoadMode, iloDirectMode and

ALTIBASE_ILOADER_LOG_TYPE enumerators can be found iLoader APl Enumerators.

This structure is defined as follows:

typedef struct ALTIBASE_ILOADER_OPTIONS_V1

{

} ALTIBASE_ILOADER_OPTIONS_V1;

int version;

char loginID[128 * 2];
char password[128];
char serverName[128];
int portNum;

char NLS[128];

char DBName[128];
char tableOwner[50];
char tableName[50];
char formFile[1024];
char dataFile[32][1024];
int dataFileNum;

int firstRow;

int lastRow;

char fieldTerm[11];
char rowTerm[11];
char enclosingChar[11];
iloBool useLobFile;
iloBool useSeparateFile;
char lobFileSize[11];
char lobIndicator[11];
iloBool replication;
iloLoadMode loadModeType;
char bad[1024];

char log[1024];

int splitRowCount;
int errorCount;

int arrayCount;

int commitUnit;
iloBool atomic;
iloDirectMode directLog;

int parallelCount;

int readSize;

iloBool informix;

iloBool flock;

iloBool mssql;

iloBool getTotalRowCount;
int setRowFrequency;

[* -u login_id */
[* -p password */
I* -s server_name */
[* -port port_no */
/* -nls_use characterset */

/* -T table_name */
[* -f formatfile */
/* -d datafile */

[* -F firstrow */
/* -L lastrow */
/* -t field_term */
[* -r row_term */
/* -e enclosing_term */
/* -lob use_lob_file */
/* -lob use_separate_file */
/* -lob log_file_size */
/* -lob lob_indicator*/
/* -replication true/false */
[* -mode mode_type */
I* -bad bad_file */
[* -log log_file */
/* -splitn */
[* -errors count */
[* -array array_size */
[* -commit commit_unit */
/* -atomic */
[* -direct log/nolog */
[* -parallel count */
[* -readSize size */

Member

Description

The iLoader APIThe CheckServer API

73

Member Description

version This must be set to the same value as the version argument that is
passed by altibase_iloader_options_init().

tableOwner This is used to specify the name of the table owner.

loadModeType ILO_APPEND: This is the same as APPEND, one of the possible val-
ues for the iLoader -mode option.
ILO_REPLACE: This is the same as REPLACE, one of the possible
values for the iLoader -mode option.
ILO_TRUNCATE: This is the same as TRUNCATE, one of the possi-
ble values for the iLoader -mode option.
The default value is ILO_APPEND.

atomic This is used to specify whether to use Atomic Array INSERT. It can
be either ILO_TRUE or ILO_FALSE.
The default value is ILO_FALSE.

directLog This is used to specify whether to use direct-path INSERT.
Ifitissetto ILO_DIRECT_NONE, Direct-Path INSERT is not used.
Ifitissetto ILO_DIRECT_LOG, Direct-Path INSERT is executed in
logging mode.
Ifitissetto ILO_DIRECT_NOLOG, Direct-Path INSERT is executed
in nologging mode.
The default value is ILO_DIRECT_NONE.

dataFileNum This is used to specify the number of datafiles for the dataFile member

in this structure.

getTotalRowCount

This specifies whether to get the total number of rows in the datafiles
and set the totalCount member in the
ALTIBASE_ILOADER_STATISTIC_LOG structure to this number
when uploading data.

It can be either ILO_TRUE or ILO_FALSE.

The default value is ILO_FALSE.

setRowFrequency

The user callback function is called every time the number of rows
specified here is uploaded or downloaded.

The default value is 0. If this value is set to 0, the callback function is
never called.

74 Application Program Interface Users’ Manual

5.3.5 iLoader APl Enumerators

typedef enum

ILO_FALSE =0, /* false */
ILO_TRUE =1 I* true */
} iloBool;
typedef enum

ILO_APPEND,

ILO_REPLACE,

ILO_TRUNCATE
} iloLoadMode;
typedef enum

ILO_DIRECT_NONE,
ILO_DIRECT_LOG,
ILO_DIRECT_NOLOG
} iloDirectMode;
typedef enum

ILO_LOG,
ILO_STATISTIC_LOG
} ALTIBASE_ILOADER_LOG_TYPE;

The iLoader APIThe CheckServer APl 75

5.4 The iLoader API

This section describes each of the functions in the iLoader API.

The following information is provided for each function.

e The name and purpose of the function

e The function syntax

e Alist of arguments for the function

e The function’s return values

* Diagnostics for the function

¢ Notes related to use of the function

e Alist of related functions

¢ An example of use of the function in code

5.4.1 altibase_iloader _datain

This function is used to upload data into a database table.

5.4.1.1 Syntax

int altibase_iloader_datain (ALTIBASE_ILOADER_HANDLE * handle,

int version

void * options
ALTIBASE_ILOADER_CALLBACK logCallback,
ALTIBASE ILOADER_ERROR * error);

5.4.1.2 Arguments
Argument In/Out Description
handle Input This is the pointer to the iLoader handle.
version Input This is the version of the iLoader API.
options Input This is the pointer to the option structure.
logCallback Input This is the name of a log callback function. It may be a
user-defined function. It can be NULL.

76 Application Program Interface Users’ Manual

Argument In/Out Description

error Output This is the pointer to the error structure in which to re-

turn information for diagnosing errors. For more infor-
mation about the error structure, please refer to iLoader
API Data Structures.

5.4.1.3 Return Values

ALTIBASE_ILO_SUCCESS, ALTIBASE_ILO_ERROR, or ALTIBASE_ILO_WARNING

If the overall upload operation succeeded but one or more errors occurred,
ALTIBASE_ILO_WARNING is returned.

5.4.1.4 Diagnostics

When altibase_iloader_datain()returns either ALTIBASE_ILO_ERROR or
ALTIBASE_ILO_WARNING, the associated error information is returned in error.

5.4.1.5 Description

altibase_iloader_datain() is used to upload data from a file into a database table.
The value of the version argument must be ALTIBASE _ILOADER_V1.

If a user-defined log callback function is being used, specify the name of the function in

logCallback. Set logCallback to NULL when not using a user-defined log callback function.

5.4.1.6 Related Functions

altibase_iloader_init
altibase_iloader_options_init
altibase_iloader_formout

altibase_iloader_final

5.4.1.7 Example

The following example shows how to specify a format file and a data file when uploading data,
both when using the iLoader utility directly and when calling the iLoader API from within an ap-

plication.

e Uploading Data using the iLoader Utility

The iLoader APIThe CheckServer APl 77

iloader in -5 127.0.0.1 -u sys -p manager -f t1.fmt -d t1.dat

e Uploading Data Using an Application that Calls the iLoader API

int main()
{
ALTIBASE_ILOADER_HANDLE handle = ALTIBASE_ILOADER_NULL_HANDLE;
ALTIBASE_ILOADER_OPTIONS_V1 opt;
ALTIBASE_ILOADER_ERROR err;
intrc;

/* Allocate an ILOADER handle */
rc = altibase_iloader_init(&handle);

if (rc != ALTIBASE_ILO_SUCCESS)

printf(“altibase_iloader_init() failed: %d\n", rc);
return 1;

}

/* Initialize an option structure */
altibase_iloader_options_init(ALTIBASE_ILOADER_V1, &opt);
strcpy(opt.serverName, "127.0.0.1");

strcpy(opt.loginlD, "sys");

strcpy(opt.password, "manager");

strcpy(opt.formFile, "t1.fmt");

strcpy(opt.dataFile[0], "t1.dat");

opt.dataFileNum = 1;

/* Upload data */
rc = altibase_iloader_datain(&handle, ALTIBASE_ILOADER_V1, &opt, NULL, &err);

if (rc == ALTIBASE_ILO_SUCCESS)
printf("SUCCESS\n");
else
printf("ERR-%05X [%s] %s\n",
err.errorCode,

err.errorState,
err.errorMessage);

3
if (handle 1= ALTIBASE_ILOADER_NULL_HANDLE)

altibase_iloader_final(&handle);

}

return O;

5.4.2 altibase_iloader dataout

This function is used to download data from a database table and write the data to a file.

5.4.2.1 Syntax

int altibase_iloader_dataout (ALTIBASE_ILOADER_HANDLE * handle,
int version
void * options

78 Application Program Interface Users’ Manual

ALTIBASE_ILOADER_CALLBACK logCallback,
ALTIBASE_ILOADER_ERROR * error);

5.4.2.2 Arguments

Argument In/Out Description
handle Input This is the pointer to the iLoader handle.
version Input This is the version of the iLoader API.
options Input This is the pointer to the option structure.
logCallback Input This is the name of a log callback function. It may be a

user-defined function.

error Output This is the pointer to the diagnostic error structure in
which to return information for diagnosing errors. For
more information about this structure, please refer to
iLoader API Data Structures.

5.4.2.3 Return Values

ALTIBASE_ILO_SUCCESS or ALTIBASE_ILO_ERROR

5.4.2.4 Diagnostics

When altibase_iloader_dataout()returns ALTIBASE_ILO_ERROR, the associated error information is

returned in error.

5.4.2.5 Description

altibase_iloader_dataout() is used to download data from a database table and write the data to a

file.
The value of the version argument must be ALTIBASE_ILOADER_V1.

If a user-defined log callback function is being used, specify the name of the function in

logCallback. Set logCallback to NULL when not using a user-defined log callback function.

5.4.2.6 Related Functions

altibase_iloader_init

altibase_iloader_options_init

The iLoader APIThe CheckServer APl 79

altibase_iloader_formout

altibase_iloader_final

5.4.2.7 Example

The following example shows how to specify a format file and a data file when downloading data,
both when using the iLoader utility directly and when calling the iLoader API from within an ap-

plication.

* Downloading Data Using the iLoader Utility
iloader out -5 127.0.0.1 -u sys -p manager -f t1.fmt -d t1.dat

* Downloading Data Using an Application that Calls the iLoader API

int main()
ALTIBASE_ILOADER_HANDLE handle = ALTIBASE_ILOADER_NULL_HANDLE;
ALTIBASE_ILOADER_OPTIONS_V1 opt;
ALTIBASE_ILOADER_ERROR err;
int rc;

/* Allocate an iLoader handle */
rc = altibase_iloader_init(&handle);

if (rc 1= ALTIBASE_ILO_SUCCESS)

printf("altibase_iloader_init() failed: %d\n", rc);
return 1;

}

/* Initialize an option structure */
altibase_iloader_options_init(ALTIBASE_ILOADER_V1, &opt);

strcpy(opt.serverName, "127.0.0.1");
strcpy(opt.loginlD, "sys");
strcpy(opt.password, "manager");
strepy(opt.formFile, "t1.fmt");
strcpy(opt.dataFile[0], "t1.dat");
opt.dataFileNum = 1;

/* Download data */
rc = altibase_iloader_dataout(&handle, ALTIBASE_ILOADER_V1, &opt, NULL, &err);

if (rc == ALTIBASE_ILO_SUCCESS)

printf("SUCCESS\n");

}
else
printf("ERR-%05X [%s] %s\n",
err.errorCode,
err.errorState,
err.errorMessage);
}

if (handle 1= ALTIBASE_ILOADER_NULL_HANDLE)

altibase_iloader_final(&handle);

80 Application Program Interface Users’ Manual

return O;

5.4.3 altibase_iloader_final

This function is used to free a handle and all associated resources.

5.4.3.1 Syntax

int altibase_iloader_final (ALTIBASE_ILOADER_HANDLE * handle);

5.4.3.2 Arguments
Argument In/Out Description
handle Input This is the pointer to the iLoader handle to be freed.

5.4.3.3 Return Values

ALTIBASE_ILO_SUCCESS or ALTIBASE_ILO_ERROR

5.4.3.4 Description

altibase_iloader_final() frees the resources associated with the specified iLoader handle.

After a handle has been freed, it cannot be used by the application.

5.4.3.5 Related Functions

altibase_iloader_init

5.4.3.6 Example

Please refer to altibase_iloader_init.

5.4.4 altibase_iloader formout

This function is used to create a table format file (i.e. FORM file).

5.4.4.1 Syntax

int altibase_iloader_formout (ALTIBASE_ILOADER_HANDLE * handle,
int version
void * options
ALTIBASE_ILOADER_ERROR * error);

The iLoader APIThe CheckServer APl 81

5.4.4.2 Arguments

Argument In/Out Description

handle Input This is the pointer to the iLoader handle.

version Input This is the version of the iLoader API.

options Input This is the pointer to the option structure.

error Output This is the pointer to the error structure in which to re-
turn information for diagnosing errors. For more infor-
mation about this structure, please refer to iLoader API
Data Structures.

5.4.4.3 Return Values

ALTIBASE_ILO_SUCCESS or ALTIBASE_ILO_ERROR

5.4.4.4 Diagnostics

When altibase_iloader_formout()returns ALTIBASE_ILO_ERROR, the associated error information

is returned in error.

5.4.4.5 Description

altibase_iloader_formout() is used to create a format file (FORM file) that describes a database ta-
ble.

This function can be called only after altibase_iloader_init() and altibase_iloader_options_init() have

been called.

The value of the version argument must be ALTIBASE_ILOADER_V1.

5.4.4.6 Related Functions

altibase_iloader_init
altibase_iloader_options_init
altibase_iloader_datain
altibase_iloader_dataout

altibase_iloader_final

82 Application Program Interface Users’ Manual

5.4.4.7 Example

The following example shows how to create a format file that describes table 77, both when using

the iLoader utility directly and when calling the iLoader API from within an application.

* Creating a Format File Using the iLoader Utility
iloader formout -s 127.0.0.1 -u sys -p manager -T T1 -f t1.fmt
* Creating a Format File Using an Application that Calls the iLoader API.

int main()
{
ALTIBASE_ILOADER_HANDLE handle = ALTIBASE_ILOADER_NULL_HANDLE;
ALTIBASE_ILOADER_OPTIONS_V1 opt;
ALTIBASE_ILOADER_ERROR err;
intrc;

/* Allocate an iLoader handle */
rc = altibase_iloader_init(&handle);

if (rc 1= ALTIBASE_ILO_SUCCESS)

printf("Failed to altibase_iloader_init() failed: %d\n", rc);
return 1;

}

/* Initialize an option structure */
altibase_iloader_options_init(ALTIBASE_ILOADER_V1, &opt);

strcpy(opt.serverName, "127.0.0.1");
strcpy(opt.loginlD, "sys");
strcpy(opt.password, "manager");
strcpy(opt.tableName, "t1");
strcpy(opt.formFile, "t1.fmt");

/* formout */
rc = altibase_iloader_formout(&handle, ALTIBASE_ILOADER_V1, &opt, &err);

if (rc == ALTIBASE_ILO_SUCCESS)

printf("SUCCESS\n");

}
else
printf("ERR-%05X [%s] %s\n",
err.errorCode,
err.errorState,
err.errorMessage);
}

if (handle 1= ALTIBASE_ILOADER_NULL_HANDLE)

altibase_iloader_final(&handle);

}

return O;

5.4.5 altibase_iloader _init

This function allocates an iLoader handle.

The iLoader APIThe CheckServer APl 83

5.4.5.1 Syntax

int altibase_iloader_init (ALTIBASE_ILOADER_HANDLE * handle);

5.4.5.2 Arguments
Argument In/Out Description
handle Output This is a pointer to a buffer in which the handle to the
newly allocated data structure is returned.

5.4.5.3 Return Values

ALTIBASE_ILO_SUCCESS or ALTIBASE_ILO_ERROR

5.4.5.4 Description

altibase_iloader_init() allocates a handle that is used when creating a table format file, downloading

data, or uploading data.

One handle cannot be shared by multiple threads, even if the threads are part of the same pro-

cess.

5.4.5.5 Related Functions

altibase_iloader_datain
altibase_iloader_dataout
altibase_iloader_formout

altibase_iloader_final

5.4.5.6 Example
int main()

ALTIBASE_ILOADER_HANDLE handle = ALTIBASE_ILOADER_NULL_HANDLE;
intrc;

rc = altibase_iloader_init(&handle);
if (rc '= ILOADER_SUCCESS)
{

}

/*...omit ... *

printf(“altibaseéen” |lmad)eyr _init(() failed: %d

if(handle = ALTIBASE_ILOADER_NULL_HANDLE)

altibase_iloader_final(&handle);

84 Application Program Interface Users’ Manual

}

return O;

5.4.6 altibase_iloader_options_init

This function initializes an option structure to the default values.

5.4.6.1 Syntax

int altibase_iloader_options_init (int version,
void* options);

5.4.6.2 Arguments
Argument In/Out Description
version Input This is the version of the iLoader API.
options Input This is the pointer to the option structure.

5.4.6.3 Return Values

ALTIBASE_ILO_SUCCESS or ALTIBASE_ILO_ERROR

5.4.6.4 Description

altibase_iloader_options_init() initializes an option structure to the default values. For detailed in-
formation about the default values, please refer to iLoader API Data Structures and to the Altibase

iLoader User’s Manual.

The option structure must be initialized using this function before setting the option structure.

5.4.6.5 Related Functions

altibase_iloader_init

5.4.6.6 Example

Please refer to the examples for the altibase_iloader_datain and altibase_iloader_dataout function.

5.4.7 CallbackFunctionName

This function is a user-defined callback function for handling the log information that is generated

The iLoader APIThe CheckServer APl 85

during the execution of an application that uses the iLoader API.

5.4.7.1 Syntax

int CallbackFuncationName (ALTIBASE_ILOADER_LOG_TYPE type,

void * log);
5.4.7.2 Arguments
Argument In/Out Description
type Input This is the type of the log structure to return. It may be either
ILO_LOG or ILO_STATISTIC_LOG.
log Input This is the pointer to the log structure. Depending on the value of

type, this argument will point to an
ALTIBASE_ILOADER_LOG structure or to an
ALTIBASE_ILOADER_STATISTIC_LOG structure. If type is
ILO_LOG, log is a pointer to an ALTIBASE_ILOADER_LOG
structure, whereas if type is ILO_STATISTIC_LOG, log is a
pointer to an ALTIBASE_ILOADER_STATISTIC_LOG struc-
ture.

For more information about the structures, please refer to Log
Structure.

5.4.7.3 Return Values

If ILO_STATISTIC_LOG is specified for #ype when a user-defined callback function is called, and

the user-defined callback function returns anything other than 0 (zero), execution of the current

upload or download task will stop.

5.4.7.4 Description

The Altibase iLoader API has the capability to execute user-specific code in addition to iLoader

API calls. This functionality allows users to control execution of their applications based on the

contents of iLoader logs. When altibase_iloader_datain() or altibase_iloader_dataout() is called, a

callback function, which may be a user-defined function, can be registered. When the callback

function is called, it receives the following iLoader log information: the time at which the task

started, the total number of rows to be uploaded or downloaded, the number of rows that have

been successfully uploaded or downloaded, and the number of rows that could not be uploaded or

downloaded due to the occurrence of an error.

The application's callback function will be called at the following times:

* When an error occurs during the course of an upload or download operation. At this time,

the structure that is passed to the callback function is ILO_LOG

86 Application Program Interface Users’ Manual

(ALTIBASE_ILOADER_LOG). The ALTIBASE_ILOADER_LOG structure contains an
Error Structure, which contains an errorCode member. If the value of that member is not

0, this means that an error has occurred.

* After an iLoader task has completely executed following a call to altibase_iloader_datain()
or altibase_iloader_dataout(). At this time, the structure that is passed to the callback func-
tion is ILO_LOG (ALTIBASE_ILOADER_LOG). If the value of the record member of the

log structure is 0, this means that execution has completed.

e Every time the number of rows specified in setRowFrequency, a member of the Option
Structure, is uploaded or downloaded. At this time, the structure that is passed to the
callback function is ILO_STATISTIC_LOG (ALTIBASE_ILOADER_STATISTIC_LOG).

If a user-defined callback function returns anything other than 0 (zero), execution of the
current upload or download task will stop. Note that at that point, the value of loadCount
may be incorrect.

Note that although the user callback function is supposed to be called whenever the
number of rows specified in the setRowFrequency member is uploaded or downloaded,
this behavior may not be exhibited in the following cases:

- When the value of the arrayCount member of the option structure is greater than 1, a
user callback function cannot be called during the execution of an upload task.

- When the value of the parallelCount member of the option structure is greater than 1, a
user callback function may not be called for reasons related to synchronization between

multiple threads.

5.4.7.5 Related Functions

altibase_iloader_datain

altibase_iloader_dataout

5.4.7.6 Example

* Defining User Callback
int print_callback (ALTIBASE_ILOADER_LOG_TYPE type, void *log)
inti;

ALTIBASE_ILOADER_LOG *slog;
ALTIBASE_ILOADER_STATISTIC_LOG *statisticlog;

if (type ==1LO_LOG)
slog = (ALTIBASE_ILOADER_LOG *) log;
if (slog->record ==0)

printf("LOG Total Count : %d\n", slog->totalCount);
printf("LOG Load Count : %d\n", slog->loadCount);

The iLoader APIThe CheckServer APl 87

printf("LOG Error Count : %d\n", slog->errorCount);
else

printf("LOG %d\n", slog->record);
for (i = 0; i < slog->recordColCount; i++)

printf(" [%d] : %s\n", i, slog->recordDatal[i]);

}

if (slog->errorMgr.errorCode '=0)

printf(" ERR-%05X [%s] %s\n",
slog->errorMgr.errorCode,
slog->errorMgr.errorState,
slog->errorMgr.errorMessage);

}
}
else if (type == ILO_STATISTIC_LOG)
{
statisticlog = (ALTIBASE_ILOADER_STATISTIC_LOG *) log;

printf("STATISTIC LOG Start Time : %s\n", ctime(&statisticlog->startTime));
printf("STATISTIC LOG Table Name : %s\n", statisticlog->tableName);
printf("STATISTIC LOG Total Count : %d\n", statisticlog->totalCount);
printf("STATISTIC LOG Load Count : %d\n", statisticlog->loadCount);
printf("STATISTIC LOG Error Count : %d\n", statisticlog->errorCount);

return O;
* Registering User Callback

[* upload data */

altibase_iloader_datain(&handle,
ALTIBASE_ILOADER_V1,
&opt,
print_callback,
&err);

88 Application Program Interface Users’ Manual

6 The CheckServer API

eeeeeeeeeeeeeeeeeee

6.1 Overview of the CheckServer API

The CheckServer API of Altibase is an application programming interface for creating applications
that use function calls to monitor whether the Altibase server has terminated abnormally. The
CheckServer API provides the same functionality as the CheckServer utility. For more information

about the CheckServer utility, please refer to the Altibase Utilities Manual.

The following table summarizes the CheckServer API functions.

Function Name Purpose
altibase_check_server_init This function allocates a CheckServer handle.
altibase_check_server_final This function frees a handle and all associated resources.
altibase_check_server This function monitors whether an Altibase server has terminated

abnormally.
altibase check_server_cancel This function is used to terminate the execution of CheckServer.

6.1.1 Restrictions

e The CheckServer API does not support multi-threaded programs.

* An application that uses the CheckServer API can only be used to monitor an Altibase

database server on the local host, i.e. on the same machine as the application.

* Running two or more applications that use the CheckServer API at the same time will

cause application errors.

90 Application Program Interface Users’ Manual

6.2 Using the CheckServer API

6.2.1 Header File

$ALTIBASE_HOME/include/chksvr.h

6.2.2 The CheckServer Libraries

The library files that are required in order for applications to use the CheckServer API reside in the
SALTIBASE_HOME/Iib directory. Ensure that applications are always linked with the following li-

braries:

e UNIX

libchksvr.a, libaltiutil.a

6.2.3 Samples

Sample applications that use the CheckServer APl can be found in the
SALTIBASE_HOME/sample/CHECKSERVER directory.

The CheckServer APl 91

63 CheckServer API Data Structure

This section describes the C type that is made available to applications that use the CheckServer
API.

6.3.1 The CheckServer Handle

The CheckServer handle is an opaque data structure that is defined in the CheckServer API li-
brary. It is used to store information pertaining to the behavior of applications that use the
CheckServer API.

* ALTIBASE_CHECK_SERVER_HANDLE

This is the CheckServer handle. The CheckServer handle is primarily used when monitoring an
Altibase server. The CheckServer handle is allocated with altibase_check_server_init() and freed

with altibase_check_server_final().

92 Application Program Interface Users’ Manual

6.4 The CheckServer API

This section describes each of the functions in the CheckServer API.
The following information is provided for each function.

The name and purpose of the function

The function syntax

A list of arguments for the function

The function’s return values

Diagnostics for the function

Notes related to use of the function

A list of related functions

An example of use of the function in code

6.4.1 altibase _check_server

This function checks whether the Altibase process is running.

6.4.1.1 Syntax

int altibase_check_server (ALTIBASE_CHECK_SERVER_HANDLE handle);

6.4.1.2 Arguments
Argument In/Out Description
handle Input The CheckServer handle

6.4.1.3 Return Values

ALTIBASE_CS_SERVER_STOPPED, ALTIBASE_CS_ERROR, or
ALTIBASE_CS_INVALID_HANDLE

If the Altibase server terminates abnormally, this function returns
ALTIBASE_CS_SERVER_STOPPED.

6.4.1.4 Description

When CheckServer is started or this function is called, a file named checkserver.pid is created in

The CheckServer API

93

the $ALTIBASE_HOME/trc directory. The presence of the checkserver.pid file prevents another in-
stance of the CheckServer API application from being started while the current instance is running.

Calling altibase_check_server_final() removes this file.

If this function is called while the Altibase server is running, the application that called this function
will be nonresponsive until an error occurs, until it is detected that the Altibase server is shutting

down, or until altibase_check_server_cancel() is called.

6.4.1.5 Related Functions

altibase_check_server_init
altibase_check_server_final

altibase_check_server_cancel

6.4.1.6 Example
int main()

{
ALTIBASE_CHECK_SERVER_HANDLE handle = ALTIBASE_CHECK_SERVER_NULL_HANDLE;

char *homeDir = NULL;

int rc;

rc = altibase_check_server_init(&handle, homeDir);
if (rc 1= ALTIBASE_CS_SUCCESS)

printf("altibase_check_server_init() failed: %d\n", rc);

rc = altibase_check_server(handle);
if (rc == ALTIBASE_CS_SERVER_STOPED)

printf("Server stopped.\n");

}
else
printf("An error has occured: %d\n", rc);
}
if (handle = ALTIBASE_CHECK_SERVER_NULL_HANDLE)
{
altibase_check_server_final(&handle);
}
return 0;

6.4.2 altibase_check server_final

This function frees a handle and all associated resources.

94 Application Program Interface Users’ Manual

6.4.2.1 Syntax

int altibase_check_server_final (

ALTIBASE_CHECK_SERVER_HANDLE * handle);

6.4.2.2 Arguments

Argument In/Out Description

handle Input This is the pointer to the CheckServer handle to be

freed.

6.4.2.3 Return Values

ALTIBASE_CS_SUCCESS, ALTIBASE_CS_ERROR, or ALTIBASE_CS_INVALID_HANDLE

6.4.2.4 Description

altibase_check_server_final() frees all resources associated with the specified CheckServer handle.

Additionally, this function removes the checkserver.pid file, which was created when

altibase_check_server() was called. If the application using the CheckServer APl is terminated ab-

normally using a command such as kill, the checkserver.pid file may be left in the file system. In this

case, it will be necessary to manually delete the file before it will be possible to run the

CheckServer utility or for the application that uses the CheckServer API to call

altibase_check_server().

6.4.2.5 Related Functions

altibase_check_server_init

6.4.2.6 Example

See altibase_check_server

6.4.3 altibase_check_server_init

This function allocates a CheckServer handle.

6.4.3.1 Syntax

int altibase_check_server_init (
ALTIBASE _CHECK_SERVER_HANDLE * handle,
char * home_dir);

The CheckServer API

95

6.4.3.2 Arguments

Argument In/Out Description

handle Output This is a pointer to a buffer in which the handle to the
newly allocated data structure is returned.

home_dir Input This must be set to the SALTIBASE_HOME directory.

6.4.3.3 Return Values

ALTIBASE_CS_SUCCESS or ALTIBASE_CS_ERROR

6.4.3.4 Description

This function allocates memory for information related to CheckServer, and passes a pointer to
this memory back in *handle. Only one Altibase server can be monitored by one application that
uses the CheckServer API. The location of this server is specified using the home_dir argument. If
home_dir is set to NULL, the value of the ALTIBASE_HOME environment variable is used.

Only one CheckServer handle can be used within one application. Additionally, a CheckServer

handle cannot be shared by more than one thread at the same time.

6.4.3.5 Related Functions

altibase_check_server

6.4.3.6 Example

See altibase_check_server.

6.4.4 altibase _check_server_cancel

This function cancels the processing of the altibase_check_server()function associated with the

specified handle.

6.4.4.1 Syntax

int altibase_check_server_cancel (
ALTIBASE _CHECK_SERVER_HANDLE handle);

96 Application Program Interface Users’ Manual

6.4.4.2 Arguments

Argument

In/Out

Description

handle

Input

This is the CheckServer handle to be canceled.

6.4.4.3 Return Values

ALTIBASE_CS_SUCCESS or ALTIBASE_CS_ERROR or ALTIBASE_CS_INVALID_HANDLE

6.4.4.4 Description

In a multithreaded application, one thread can call altibase_check_server_cancel() to cancel the

altibase_check_server() function that is running on another thread. If the call to

altibase_check_server_cancel() is successful, altibase_check_server() is stopped, and the value
ALTIBASE_CS_ABORTED_BY_USER is returned.

It might take some time from the time that altibase_check_server_cancel() is called until the execution

of altibase_check_server() is terminated.

Once altibase_check_server_cancel() has been called, if it is called again before

altibase_check_server() returns a result, there is no guarantee that either call to

altibase_check_server_cancel() will execute correctly.

6.4.4.5 Related Functions

altibase_check_server

6.4.4.6 Example

See altibase_check_server.

The CheckServer API

97

altibase_check_server()

altibase_check_server_cancel()
altibase_check_server_final()

altibase_check_server_init()

altibase_iloader_datain()

altibase_iloader_dataout()

altibase_iloader_final()

altibase_iloader_formout()

altibase_iloader_init()

altibase_iloader_options_init()

CheckServer API

Data Structure

Libraries

overview

restrictions

Samples

Executing JDBC/XA

Executing ODBC/XA

Executing SES/XA

iLoader API

CallbackFunction

Data Structures

Libraries

overview

Samples

Installing Altibase PERL DBD

Index

93
96
94
95
76
78
81
81
83
85

92
91
90
90
91

45
43
44

85
70
69
68
69
30

JDBC Distributed Transactions..........cccoeceeomeeeeeennnn: 53
PERL DBD 28
PERL DBI 28
PERL Package Installation 29

PHP
Installing ODBC Manager 15
Sample Test 17
Unix ODBC 15
PHP Functions for ODBC Connectivity..........cccoou... 17
PHP Module 14
Processing in-doubt Transactions........cccccuweeen. 64
TPM Application 48
Using XA 43
XA Interface 38
Limitations 50
overview 34
XA Library 37
XA Tracking Information 64
xa_switch_t Structure 37
XAConnection Interface 54
Xid interface 56
Index 99

	Contents
	Preface
	About This Manual
	Audience
	Software Environment
	Organization
	Documentation Conventions
	Syntax Diagram Conventions
	Sample Code Conventions

	Related Reading
	Online Manuals
	Altibase Welcomes Your Comments

	1 The PHP Interface
	1.1 About the PHP Module of Altibase
	1.2 Installing the ODBC Manager for Integration with PHP
	1.2.1 The ODBC Manager in Unix and Linux

	1.3 PHP Functions for ODBC Connectivity
	1.3.1 Sample Test

	2 PDO Driver
	2.1 Installation and Setup
	2.1.1 Download
	2.1.2 Installation
	2.1.3 Environment Setup

	2.2 Constraints
	2.3 How to Use
	2.3.1 DSN Configuration
	2.3.1.1 Example

	2.3.2 Connection Attributes
	2.3.3 Parameter Binding
	2.3.3.1 Example

	2.3.4 Column Binding
	2.3.5 Other Binding Constraints

	2.4 Examples
	2.4.1 Connection Setup and Query Execution
	2.4.1.1 Sample Code

	2.4.2 DATE Format Setup
	2.4.2.1 Sample Code
	2.4.2.2 Output

	2.4.3 Execution Plan Check
	2.4.3.1 Sample Code
	2.4.3.2 Output

	2.4.4 Cursor Holding
	2.4.4.1 Sample Code

	3 PERL DBD DBI
	3.1 Overview of the Perl DBD and DBI
	3.2 Perl Package Installation
	3.2.1 The Perl Package Installation Procedure

	3.3 Installing the Altibase DBD
	3.3.1 The Altibase PERL DBD Installation Procedure
	3.3.1.1 Check the Perl Installation
	3.3.1.2 Install the Perl DBI
	3.3.1.3 Download and Uncompress the Altibase Perl DBD Files
	3.3.1.4 Make the Altibase Perl DBD
	3.3.1.5 Make Additional Environment Settings
	3.3.1.6 Test the Altibase Perl DBD Installation

	4 XA Interface
	4.1 XA Interface
	4.1.1 XA Glossary
	4.1.2 XA Structure
	4.1.3 XA and 2PC (Two-Phase Commit)
	4.1.4 xa_switch_t Structure
	4.1.5 The XA Library

	4.2 The XA Interface
	4.2.1 XA Functions
	4.2.1.1 xa_open
	4.2.1.2 xa_close
	4.2.1.3 xa_start
	4.2.1.4 xa_end
	4.2.1.5 xa_rollback
	4.2.1.6 xa_prepare
	4.2.1.7 xa_commit
	4.2.1.8 xa_recover
	4.2.1.9 xa_forget
	4.2.1.10 xa_complete

	4.3 Using XA
	4.3.1 Executing ODBC/XA
	4.3.1.1 SQLSetConnectAttr

	4.3.2 Executing APRE/XA
	4.3.2.1 How to Author an Application depending on the Setting of XA_NAME in xa_open

	4.3.3 Executing JDBC/XA
	4.3.4 XA Transaction Control
	4.3.4.1 Example

	4.3.5 Changing an Existing Application into a TPM Application

	4.4 Limitations when using XA
	4.4.1 Limitations on Use of SQL
	4.4.1.1 Rollback and Commit
	4.4.1.2 DDL
	4.4.1.3 The AUTOCOMMIT Session Property
	4.4.1.4 SET TRANSACTION
	4.4.1.5 Connection or Disconnection with EXEC SQL Statements

	4.4.2 Limitations related to Transaction Branches
	4.4.3 No Support for Association Migration
	4.4.4 No Support for Asynchronous Calls
	4.4.5 No Support for Dynamic Registration
	4.4.6 Server Shutdown
	4.4.6.1 Abnormal Server Shutdown
	4.4.6.2 Normal Server Shutdown

	4.5 JDBC Distributed Transactions
	4.5.1 JTA (Java Transaction API) and Application Server
	4.5.2 XA Components
	4.5.2.1 XADataSource Interface
	4.5.2.2 XAConnection Interface
	4.5.2.3 XAResource Interface
	4.5.2.4 The Xid interface

	4.5.3 Error Handling
	4.5.4 Making XA Settings in Application Servers
	4.5.4.1 Making XA Settings in WebLogic
	4.5.4.2 Weblogic Application Example
	4.5.4.3 Making XA Settings in JEUS
	4.5.4.4 JEUS Application Example

	4.5.5 Example

	4.6 How to Solve Application Problems Using XA
	4.6.1 Checking XA Tracking Information
	4.6.1.1 XA Trace File Name and Location
	4.6.1.2 Example

	4.6.2 Processing In-doubt Transactions
	4.6.2.1 Example

	4.6.3 Checking Heuristically Completed Transactions
	4.6.3.1 Example

	5 The iLoader API
	5.1 Overview of the iLoader API
	5.2 Using the iLoader API
	5.2.1 Header Files
	5.2.2 Libraries
	5.2.3 Samples

	5.3 iLoader API Data Structures
	5.3.1 The iLoader Handle
	5.3.2 Error Structure
	5.3.3 Log Structure
	5.3.4 Option Structure
	5.3.5 iLoader API Enumerators

	5.4 The iLoader API
	5.4.1 altibase_iloader_datain
	5.4.1.1 Syntax
	5.4.1.2 Arguments
	5.4.1.3 Return Values
	5.4.1.4 Diagnostics
	5.4.1.5 Description
	5.4.1.6 Related Functions
	5.4.1.7 Example

	5.4.2 altibase_iloader_dataout
	5.4.2.1 Syntax
	5.4.2.2 Arguments
	5.4.2.3 Return Values
	5.4.2.4 Diagnostics
	5.4.2.5 Description
	5.4.2.6 Related Functions
	5.4.2.7 Example

	5.4.3 altibase_iloader_final
	5.4.3.1 Syntax
	5.4.3.2 Arguments
	5.4.3.3 Return Values
	5.4.3.4 Description
	5.4.3.5 Related Functions
	5.4.3.6 Example

	5.4.4 altibase_iloader_formout
	5.4.4.1 Syntax
	5.4.4.2 Arguments
	5.4.4.3 Return Values
	5.4.4.4 Diagnostics
	5.4.4.5 Description
	5.4.4.6 Related Functions
	5.4.4.7 Example

	5.4.5 altibase_iloader_init
	5.4.5.1 Syntax
	5.4.5.2 Arguments
	5.4.5.3 Return Values
	5.4.5.4 Description
	5.4.5.5 Related Functions
	5.4.5.6 Example

	5.4.6 altibase_iloader_options_init
	5.4.6.1 Syntax
	5.4.6.2 Arguments
	5.4.6.3 Return Values
	5.4.6.4 Description
	5.4.6.5 Related Functions
	5.4.6.6 Example

	5.4.7 CallbackFunctionName
	5.4.7.1 Syntax
	5.4.7.2 Arguments
	5.4.7.3 Return Values
	5.4.7.4 Description
	5.4.7.5 Related Functions
	5.4.7.6 Example

	6 The CheckServer API
	6.1 Overview of the CheckServer API
	6.1.1 Restrictions

	6.2 Using the CheckServer API
	6.2.1 Header File
	6.2.2 The CheckServer Libraries
	6.2.3 Samples

	6.3 CheckServer API Data Structure
	6.3.1 The CheckServer Handle

	6.4 The CheckServer API
	6.4.1 altibase_check_server
	6.4.1.1 Syntax
	6.4.1.2 Arguments
	6.4.1.3 Return Values
	6.4.1.4 Description
	6.4.1.5 Related Functions
	6.4.1.6 Example

	6.4.2 altibase_check_server_final
	6.4.2.1 Syntax
	6.4.2.2 Arguments
	6.4.2.3 Return Values
	6.4.2.4 Description
	6.4.2.5 Related Functions
	6.4.2.6 Example

	6.4.3 altibase_check_server_init
	6.4.3.1 Syntax
	6.4.3.2 Arguments
	6.4.3.3 Return Values
	6.4.3.4 Description
	6.4.3.5 Related Functions
	6.4.3.6 Example

	6.4.4 altibase_check_server_cancel
	6.4.4.1 Syntax
	6.4.4.2 Arguments
	6.4.4.3 Return Values
	6.4.4.4 Description
	6.4.4.5 Related Functions
	6.4.4.6 Example

	Index

