

Altibase® Administration

Replication Manual

Release 7.1 (September 18, 2017)

2 Replication Manual

Altibase® Administration Replication Manual

Release 7.1

Copyright © 2001~2017 Altibase Corp. All rights reserved.

This manual contains proprietary information of Altibase Corporation; it is provided under a license

agreement containing restrictions on use and disclosure and is also protected by copyright patent

and other intellectual property law. Reverse engineering of the software is prohibited.

All trademarks, registered or otherwise, are the property of their respective owners.

Altibase Corp.

10F, Daerung PostTower II,

306, Digital-ro, Guro-gu, Seoul 08378, Korea

Telephone: +82-2-2082-1000 Fax: 82-2-2082-1099

Homepage: http://www.altibase.com

http://www.altibase.com/

Contents 3

Contents

Preface .. 7

About This Manual .. 8

Target Users ... 8

Software Environment... 8

Organization .. 8

Documentation Conventions ... 9

Related Documents ... 11

Online Manuals ... 11

Altibase Welcomes Your Comments ... 11

1. Replication Overview... 13

1.1 Introduction ... 14

1.1.1 Concepts ... 14

1.1.2 Terminology ... 14

1.1.3 How to Perform Replication in Altibase .. 18

1.1.4 Choosing a Replication Server ... 20

1.1.5 Choosing Replication Targets .. 20

1.1.6 Replication Mode ... 20

1.1.7 Replication of Partitioned Tables ... 21

1.1.8 Extra Features ... 22

1.1.9 Considerations ... 22

2. Managing Replication ... 25

2.1 Replication Procedures ... 26

2.2 Troubleshooting ... 27

2.2.1 Abnormal Local or Remote Server Shutdown .. 27

2.2.2 Communication Interruption Between Local and Remote Servers 28

2.2.3 Network Failure ... 29

2.3 Conflict Resolution .. 30

2.3.1 User-Oriented Scheme ... 31

2.3.2 Master-Slave Scheme .. 32

2.3.3 Timestamp-Based Scheme ... 35

2.4 Related Performance Views .. 37

2.5 EAGER Replication Failback ... 38

2.5.1 Incremental Sync ... 38

2.5.2 After Incremental Sync ... 38

4 Replication Manual

2.6 EAGER Replication Parallel Execution ... 40

2.7 Parallel Replication .. 41

2.7.1 Note .. 41

2.8 Performance View related to Replication ... 42

3. Deploying Replication ... 43

3.1 Considerations .. 44

3.1.1 Prerequisites .. 44

3.1.2 Data Requirements .. 44

3.1.3 Connection Requirements .. 44

3.1.4 Replication Target Column Constraints .. 44

3.1.5 Replication Constraints in EAGER Mode ... 45

3.1.6 Partitioned Table Constraints .. 46

3.1.7 Restrictions on Using Replication for Data Recovery .. 46

3.1.8 Additional Considerations when Using Replication for Data Recovery 46

3.1.9 Allowable DDL Statements ... 46

3.2 CREATE REPLICATION .. 48

3.2.1 Syntax ... 48

3.2.2 Prerequisites .. 48

3.2.3 Description ... 48

3.2.4 Error Codes .. 49

3.2.5 Example ... 50

3.3 Starting, Stopping and Modifying Replication using “ALTER REPLICATION” 51

3.3.1 Syntax ... 51

3.3.2 Prerequisites .. 51

3.3.3 Description ... 51

3.3.4 Error Codes .. 53

3.3.5 Example ... 53

3.4 DROP REPLICATION ... 56

3.4.1 Syntax ... 56

3.4.2 Prerequisites .. 56

3.4.3 Description ... 56

3.4.4 Error Codes .. 56

3.4.5 Example ... 56

3.5 Executing DDL Statements on Replication Target Tables ... 57

3.5.1 Syntax ... 57

3.5.2 Description ... 57

3.5.3 Restrictions .. 58

3.5.4 Example ... 59

3.6 Extra Features .. 61

Contents 5

3.6.1 Recovery Option ... 61

3.6.2 Offline Option .. 62

3.6.3 Replication Gapless Option.. 64

3.6.4 Parallel Receiver Applier Option .. 65

3.6.5 Replication Transaction Grouping Option ... 66

3.7 Replication in a Multiple IP Network Environment ... 68

3.7.1 Syntax ... 68

3.7.2 Description ... 68

3.7.3 Examples ... 69

3.8 Properties .. 74

4. Fail-Over ... 77

4.1 Fail-Over Overview.. 78

4.1.1 Concept ... 78

4.1.2 Process ... 79

4.2 Using Fail-Over ... 81

4.2.1 Registering Connection Properties ... 81

4.2.2 Checking Whether Fail-Over Succeeded ... 82

4.2.3 Writing Fail-Over Callback Functions .. 83

4.3 JDBC... 84

4.3.1 Fail-Over Callback Interface ... 84

4.3.2 Writing Fail-Over Callback Functions .. 85

4.3.3 Checking Whether Fail-Over Succeeded ... 86

4.3.4 Sending Fail-Over Connection Settings to WAS .. 87

4.3.5 Example ... 87

4.4 SQL CLI ... 91

4.4.1 Related Data Structures ... 91

4.4.2 Registering Fail-Over ... 92

4.4.3 Checking Whether Fail-Over Succeeded ... 94

4.4.4 Example ... 95

4.5 Embedded SQL ... 99

4.5.1 Registering Fail-Over Callback Functions .. 99

4.5.2 Checking Whether Fail-Over Succeeded ... 99

4.5.3 Example 1 ... 100

4.5.4 Example 2 ... 101

5. Sequence Replication ... 105

5.1 Overview .. 106

5.2 Usage Condition .. 107

5.3 Syntax .. 108

6 Replication Manual

5.3.1 Creating Sequence for Sequence Replication ... 108

5.3.2 Creating Sequence Replication .. 108

5.3.3 Startup and Shutdown of Sequence Replication ... 108

5.3.4 Remove of Sequence Replication ... 108

5.4 Notes ... 109

5.5 Example .. 110

Appendix A. FAQ .. 113

Replication FAQ .. 113

Preface 7

Preface

8 Replication Manual

About This Manual

This manual gives an overview of the Altibase replication functionality and explains in detail how to

perform replication.

Target Users

This manual has been prepared for the following Altibase users:

• database administrators

• application designers

• programmers

It is recommended that those reading this manual possess:

• basic knowledge in the use of computers, operating systems, and operating system utilities

• experience using relational databases and an understanding of database concepts

• computer programming experience

Software Environment

This manual has been prepared assuming that Altibase 7.1 will be used as the database server.

Organization

This manual has been organized as follows:

• Chapter1: Replication Overview

This chapter introduces replication in Altibase.

• Chapter2: Managing Replication

This chapter explains replication procedures in Altibase.

• Chapter3: Deploying Replication

This chapter explains how to establish a replication environment in Altibase.

• Chapter4: Fail-Over

This chapter explains the Fail-Over feature provided by Altibase and how to use it.

• Appendix A. FAQ

Preface 9

Documentation Conventions

This chapter describes the conventions used in this manual. Understanding these conventions will

make it easier to find information in this and other manuals.

There are two sets of conventions:

• syntax diagrams

• sample code conventions

Syntax Diagrams

This manual describes command syntax using diagrams composed of the following elements:

Elements Meaning

Reserved
Word

Indicates the start of a command. If a syntactic element starts

with an arrow, it is not a complete command.

Indicates that the command continues to the next line. If a syn-

tactic element ends with this symbol, it is not a complete com-

mand.

Indicates that the command continues from the previous line. If

a syntactic element starts with this symbol, it is not a complete

command.

;

Indicates the end of a statement.

SELECT

Indicates a mandatory element.

NOT

Indicates an optional element.

ADD

DROP

Indicates a mandatory element comprised of options. One, and

only one, option must be specified.

ASC

DESC

Indicates an optional element comprised of options.

10 Replication Manual

Elements Meaning

,

ASC

DESC

Indicates an optional element in which multiple elements may

be specified. A comma must precede all but the first element.

Sample Code Conventions

The code examples explain SQL, stored procedures, iSQL, and command-line statements.

The printing conventions used in the code examples are described in the following table.

Convention Meaning Example

[] Indicates an optional item. VARCHAR [(size)] [[FIXED |] VARIA-

BLE]

{ } Indicates a mandatory field for

which one or more items must be

selected.

{ ENABLE | DISABLE | COMPILE }

| A delimiter between optional or

mandatory arguments.

{ ENABLE | DISABLE | COMPILE }

[ENABLE | DISABLE | COMPILE]

.

.

.

Indicates that the previous argu-

ment is repeated, or that sample

code has been omitted.

iSQL> select e_lastname from employees;

E_LASTNAME

Moon

Davenport

Kobain

.

.

.

20 rows selected.

Other symbols Symbols other than those shown

above are part of the actual code.

EXEC :p1 := 1;

acc NUMBER(11,2);

Italics Statement elements in italics indi-

cate variables and special values

specified by the user.

SELECT * FROM table_name;

CONNECT userID/password;

Lower Case

Characters

Indicate program elements set by

the user, such as table names,

column names, file names, etc.

SELECT e_lastname FROM

employees;

Preface 11

Upper Case

Characters

Keywords and all elements pro-

vided by the system appear in up-

per case.

DESC SYSTEM_.SYS_INDICES_;

Related Documents

For more detailed information, please refer to the following documents:

• Altibase Installation Guide

• Altibase Administrator’s Manual

• Altibase Getting Started

• Altibase SQL Reference

• Altibase iSQL User’s Manual

• Altibase Error Message Reference

Online Manuals

Online versions of our manuals (PDF or HTML) are available from Altibase's Customer Support

site (http://altibase.com/support-center/).

Altibase Welcomes Your Comments

Please let us know what you like or dislike about our manuals. To help us with future versions of

our manuals, please tell us about any corrections or classifications that you would find useful.

Include the following information :

• The name and version of the manual that you are using

• Any comments that you have about the manual

• Your name, address and phone number

For immediate assistance regarding technical issues, please contact Altibase’s Customer Support

site (http://altibase.com/support-center/).

Thank you. We appreciate your feedback and suggestions.

http://altibase.com/support-center/
http://altibase.com/support-center/

Replication Overview 13

1. Replication Overview

14 Replication Manual

1.1 Introduction

The purpose of database replication is to maintain an up-to-date backup of the data on an Active

Server and provide an uninterrupted service environment in which a substitute server can be used

to resume service in the event that the Active Server unexpectedly goes offline for some reason.

This chapter covers the following subjects:

• Altibase Replication Concepts and Terminology

• How to Perform Replication in Altibase

• Choosing a Replication Server

• Choosing Replication Targets

• Replication Mode

1.1.1 Concepts

The log replay method is the basis of the Altibase replication functionality. First, a local server

transfers transaction logs to a remote server when the logs change. Then the remote server “re-

plays” the received logs to its database (that is, it implements the changes that have been rec-

orded in the logs). Altibase also provides the altiComp utility for monitoring and managing the rep-

lication status. For further information, please refer to the Utilities Manual.

1.1.2 Terminology

Active Server

 This is a replication node that is actively providing service to users and on which change opera-

tions related to master transactions take place.

Ahead Analyzer

 If the replication transaction grouping option has been specified and a replication gap occurs, this

thread analyzes logs (before the sender does) and creates replication transaction groups. Repli-

cation transaction groups help dissolve gaps; the sender references these transaction groups to

adjust the amount of XLogs it sends to the receiver.

Applier

 This term indicates a thread that applies the XLog that the sender sent to the receiver, to the

Replication Overview 15

Storage Manager. If the parallel receiver applier option is omitted, the receiver takes the role of the

applier, and the applier is not created.

However, replication performance is enhanced if the parallel receiver applier option is specified,

because several appliers can handle multiple transactions.

Change Operation

 This term indicates an INSERT, UPDATE or DELETE DML operation. This term is used to dis-

tinguish these operations from SELECT operations (which do not change the contents of a data-

base).

EAGER Mode

 This is one of two available replication modes which prioritizes data consistency over perfor-

mance. In this mode, a transaction is not committed on the local server until the local server re-

ceives a message from the remote server stating that the task has been performed and the

transaction replayed on the remote server.

LAZY Mode

 This is the other of the two available replication modes which prioritizes performance over data

consistency. In this mode, a transaction is committed on the local server without waiting for con-

firmation from the remote server.

Local Commit XSN

 This is the sequence number of the committed log record that was most recently read by the

Sender. The transaction corresponding to this XSN is not guaranteed to have been committed on

the remote server. This value is returned when the COMMIT_XSN column of the V$REPSENDER

performance view is queried.

Local Server

 In this manual, the term "local server" always refers to the local node (that is, to the server on

which the current task is being performed), regardless of whether it is an Active or Standby Server,

or whether it hosts a replication Sender or Receiver thread.

Master Transaction

 This is a transaction that takes place on an Active server when providing service to users. It in-

volves the execution of one or more change (INSERT, UPDATE or DELETE) operations on one or

more replication target tables.

Parallel Replication

16 Replication Manual

 This is the use of multiple Sender and Receiver threads to perform replication in EAGER mode.

This is not to be confused with parallel synchronization.

Parallel Synchronization

 This is the use of multiple Sender and Receiver threads to accomplish a synchronization task

(using "ALTER REPLICATION ... SYNC" or "ALTER REPLICATION ... SYNC ONLY"). This is not

to be confused with parallel replication.

Receiver

 This is a thread that receives XLogs (which contain information about changes to data) from a

counterpart server. If there is no applier, the receiver replays the XLogs on replication target ob-

jects on the local node. If there is an applier, however, the receiver merely passes the XLogs to

the applier for the applier to do the job.

Receiver Thread

 This has the same meaning as "Receiver" when not using parallel replication (i.e. when per-

forming replication using only one Sender thread and one Receiver thread). When using parallel

replication, one Receiver consists of multiple Receiver threads.

Remote Server

 This is a counterpart replication node (i.e. a node that has a 1:1 relationship with a local server to

form a replication pair).

Replication

 This term indicates the concept and action of replicating, rather than a concrete object or entity.

Replication Gap

 Conceptually, the replication gap is an indicator of how far the replication process has fallen be-

hind the current state of the database. In quantitative terms, it is the difference between the se-

quence number (not XSN) of the most recent redo log and the sequence number of the redo log

for which the corresponding XLog is currently being sent.

Replication Manager

 This is the Altibase module that starts and stops the replication Sender and Receiver.

Replication Object

 This is an object created with the CREATE REPLICATION statement. It forms a replication pair

with a counterpart replication object on another node.

Replication Overview 17

Replication Pair

 This is a pair of corresponding replication objects having the same name, one residing on each of

the two different nodes.

Replication Target Column

 This is a column that exists in corresponding replication target tables on local and remote servers.

Replication target columns cannot be explicitly designated; rather, they are determined by the

structure of the corresponding replication target tables.

Replication Target Partition

 This is a table partition that is designated, using the CREATE REPLICATION or ALTER REP-

LICATION statement, to be replicated between corresponding replication nodes.

Replication Target Table

 This is a table that is designated (using the CREATE REPLICATION or ALTER REPLICATION

statement) to be replicated between the corresponding replication nodes.

Replication Transaction

 This is a transaction that replicates a master transaction on another server. It replays the execu-

tion of one or more change (INSERT, UPDATE, or DELETE) operations on one or more replica-

tion target tables. It occurs when the Receiver receives an XLog.

Restart SN

 This is the lowest Redo SN (not XSN) corresponding to a transaction for which an XLog for rep-

lication has not been sent. It is the position from which the transmission of XLogs will recommence

when replication resumes.

Sender

 This is a thread that sends information about changes made to data by a transaction to a remote

server. It changes logs that result from the execution of DML statements on replication target ta-

bles on the local server into XLog form so that they contain information about the actual (physical)

changes made to the data and sends the resultant XLogs to the remote server.

Sender Thread

 This has the same meaning as "Sender" when not using parallel replication (i.e. when performing

replication using only one Sender thread and one Receiver thread). When using parallel replica-

tion, one Sender consists of multiple Sender threads.

18 Replication Manual

Standby Server

 This is a replication node on which change transactions are not occurring. (It may be queried

using SELECT DML statements.)

Synchronization

 "Synchronization" is a unidirectional operation in which all data in the replication target tables or

partitions on the local server are inserted into the corresponding tables or partitions on the remote

server. If any data conflict occurs on the remote server during synchronization, conflict resolution

will be applied on the remote server. It is performed by executing the ALTER REPLICATION DDL

statement with either the SYNC or SYNC ONLY keyword.

XLog

 This is a kind of log that results from the transformation of one or more redo logs into logical form

for replication. The replication Sender thread on a local server transmits an XLog to the replication

Receiver thread on a remote server, which then replays the log so that the remote server contains

the same data as the local server.

XSN

 This stands for "XLog Sequence Number". It is not to be confused with "SN" (the sequence

number of a redo log).

1.1.3 How to Perform Replication in Altibase

Replication is conducted in this way: the local server sends information of changes made to the

database contents to the remote server, and then the remote server makes the same changes to

its database.

Thus,the local and remote servers operate additional threads (apart from the service threads) that

are necessary for managing replication.

The replication Sender thread on the local server sends information of changes made to the da-

tabase contents to the remote server, and then the replication Receiver thread on the remote

server makes the same changes to the database on the remote server. Also, the replication

Sender and Receiver threads automatically detect whether or not the corresponding servers shut

down normally, and accordingly perform the appropriate tasks.

A Review of Replication Methods

 illustrates various ways in which replication is supported. In Altibase, the best of these ways is to

transform redo logs into a directly executable logical structure to maximize performance and flex-

Replication Overview 19

ibility.

Figure 1-1 A Review of Replication Methods

1. Performing replication using a client application

This method degrades performance and renders data consistency difficult.

If replication is performed by issuing commands in an application, the repeated execution of the

same query or transaction execution order can disrupt data consistency as Altibase performs rep-

lication by replaying logs.

2. Sending queries

This method increases the load on the QP (Query Processor) and renders validation difficult due

to data collisions.

3. Sending execution plans

This method increases the communication load due to the increased volume of transmissions.

4. Converting logs into query statements

This method incurs high conversion and query processing costs.

5. Converting logs directly into a form that can be executed

This method incurs high conversion cost but improves replication performance.

20 Replication Manual

6. Transmitting logs and performing log-based recovery

This method is fast but cannot be used in an “Active-Active” environment (one in which both

servers are providing service).

1.1.4 Choosing a Replication Server

To perform replication in Altibase, the database character sets and the national character sets

must be the same on both the local and remote servers. The character sets can be checked by

querying the V$NLS_PARAMETERS performance view.

1.1.5 Choosing Replication Targets

Altibase uses object names to specify replication targets. When creating a replication object, the

names of users and tables that are to be designated as replication targets must be directly speci-

fied. To replicate only a particular partition of a partitioned table, the name of the partition, the

name of the table which contains the partition and the name of the owner of the table must be di-

rectly specified. Additionally, only columns that have the same names on both the local and re-

mote servers at the time of replication can be replication targets.

The replication target columns can be checked by querying the V$REPRECEIVER_COLUMN

performance view.

1.1.6 Replication Mode

In Altibase, replication can run in one of the following modes:

• LAZY Mode

• EAGER Mode

In Table 1-1, each replication mode is characterized by performance, the possibility of delayed

replication and the level of data consistency.

Table 1-1 Replication Mode

Mode Performance Delayed Replication Data Consistency

LAZY High Possible Low

EAGER Medium Impossible High

Replication Overview 21

1.1.6.1 LAZY Mode

In LAZY mode, when a transaction occurs on a local server (“Master Transaction”) and a DML

statement is executed on a replication target table, the Sender thread collects logs recorded by

the Master Transaction, converts them into XLOGs and sends them out. The Receiver thread on

the remote server receives these XLOGs and commits the replication transactions to its database.

Thus, the transactions do not influence one another and the performance of the local server is

excellent because the master transaction and replication transaction occur separately.

However, replication may not always be completely up-to-date on very busy sites since the

Sender thread always tracks the master transactions.

1.1.6.2 EAGER Mode

In EAGER mode, when a master transaction occurs on a local server, the local server commits the

transaction only after it has received confirmation that all of the corresponding logs have been

properly applied on the remote server. The remote server commits the replication transaction at

the same time. In other words, replication in EAGER mode is a synchronization method1.

The benefit of EAGER mode is that it is possible to replicate transactions in parallel, because they

are synchronized. Therefore, when replication is running in EAGER mode, multiple Sender

threads can operate in parallel. The number of parallel threads is set using the REPLICA-

TION_EAGER_PARALLEL_FACTOR property.

In EAGER mode, although performance suffers somewhat due to transaction synchronization,

replication is not delayed on very busy servers (this can occur in LAZY mode).

Before performing replication in EAGER mode, please refer to Replication Constraints in EAGER

Mode.

1.1.7 Replication of Partitioned Tables

As shown in the following figure, a particular partition of a partitioned table can be specified and

1
Transaction Synchronization: Even if a master transaction is successfully performed on a local server, if a

replication conflict occurs on a remote server, it will be impossible to commit the master transaction on the

local server.

In such cases, the user must explicitly roll back the transaction to execute the next transaction. If the trans-

action is not rolled back, it will be impossible to apply any changes because a transaction that cannot be

committed is continually pending. Under conditions in which the local server is internally required to com-

mit a transaction (e.g., when running in Autocommit mode or when a session is terminated), the conflict

causes the master transaction that could not be committed to be automatically rolled back.

As a result, the master transaction that experienced the conflict and the replication transaction are both

rolled back, thereby preventing data inconsistency due to replication.

22 Replication Manual

replicated.

Figure 1-2 The Structure of a Replicated Partitioned Table

1.1.8 Extra Features

Altibase provides the following additional features. A detailed description of how to use the

add-ons and limitations is given in the section on Extra Features.

• Recovery Option

If experiencing abnormal server termination during the replication, data recovery recovery

option is available for preventing data inconsistency between servers by replication.

• Offline Option

If an error ocurred in the active server with the Active-Standby replication environment, this

function allows applying untransferred logs to the Standby Server with the offline option.

• Replication Gapless Option

The replication gapless option resolves replication gaps.

• Parallel Receiver Applier Option

This option allows receivers to parallely apply XLog received from the sender.

• Replication Transaction Grouping Option

This option sends logs to a sender thread by grouping multiple transactions to a single

transaction when replication gap occurrs.

1.1.9 Considerations

Tables or partitions are items which can be replicated in Altibase and the corresponding replica-

tion target items on both servers must be of the same type. Thus, a table can be replicated to a

table and a partition can be replicated to a partition, but a crossover replication is impossible.

Replication Overview 23

When dropping a replication target item from a replication object, the item must be specified ex-

actly as it was added. For example, even if every partition of a partitioned table is added as rep-

lication targets, it is impossible to specify a partitioned table and exclude it from being a replication

target; however, it is possible to specify each partition separately for exclusion.

Managing Replication 25

2. Managing Replication
This chapter explains the replication steps and how to use Altibase replication functions for vari-

ous faults and errors that can occur while performing replication.

This chapter contains the following sections:

• Replication Procedures

• Troubleshooting

• Conflict Resolution

• Related Performance Views

• EAGER Replication Failback

• EAGER Replication Parallel Execution

26 Replication Manual

2.1 Replication Procedures

The following figure shows how replication works in Altibase.

Figure 2-1 Replication Procedures

1. Choose the replication target servers

The database character sets and the national character sets must be the same on both

servers.

2. Choose the tables or partitions to be replicated

Every table to be replicated must have a primary key.

3. Set the replication conditions

Set only the logs that pertain to the replication conditions as replication targets. If it is not

specified, all of the table data will be the replication target.

4. Create a replication object using the CREATE REPLICATION statement

The replication object must have the same name in both databases.

5. Start replication using the ALTER REPLICATION statement

When replication is started, the local server creates a replication Sender thread and this

thread connects to a replication manager on the remote server. At this time, the replication

manager on the remote server generates a replication Receiver thread.

6. The replication service is started

Managing Replication 27

2.2 Troubleshooting

The typical replication issues are:

• Abnormal local or remote server shutdown

• Communication interruption between local and remote servers

• Network failure

2.2.1 Abnormal Local or Remote Server Shutdown

Figure 2-2 Replication in the Event of Server Failure

• Server A abnormally terminates

The Receiver thread on Server B terminates and the Sender thread on Server B attempts to

connect to Server A at regular intervals (e.g. every 60 seconds).

• Server A restarts (the Sender thread calls the Receiver thread on the remote server)

1. Server A’s Sender thread automatically starts and performs replication with Server B.

2. Server B’s Sender thread starts Server A’s replication Receiver thread and it performs

replication.

3. Server B’s Sender thread starts Server A’s Receiver thread.

4. Server A’s Sender thread starts Server B’s Receiver and it performs replication.

28 Replication Manual

2.2.2 Communication Interruption Between Local and Remote Servers

Figure 2-3 Replication in Response to Communication Failure with Remote Server

• The local and remote servers fail to communicate

1. The Receiver threads on Server A and B roll back and terminate uncommitted transac-

tions.

2. The Sender threads on Server A and B record the Restart SN2 and attempt to connect to

the corresponding servers every 60 seconds.

• Connection is restored

1. The Sender threads on Server A and B wake up the receiver threads on the correspond-

ing servers and perform replication by transmitting all XLOGs, starting with the XLOG

corresponding to the Redo Log having the Restart SN.

2. Receiver threads on Server A and B are created in response to connection requests from

the Sender threads on corresponding servers, and perform replication.

2
The term “Restart SN” is defined in the Glossary in Chapter 1.

Managing Replication 29

2.2.3 Network Failure

Figure 2-4 Replication in the Event of Network Failure

• Primary line is disconnected

1. Server B provides service with a backup line.

• Primary line is restored

1. Once the primary line is restored, Server A provides service.

2. Even if the primary line is down, Server B can still send task contents to Server A with the

Altibase replication functionality.

30 Replication Manual

2.3 Conflict Resolution

A ”data conflict” occurs when the master transaction makes data changes, but the replication

transaction cannot apply the changes due to duplicate primary keys or constraints.

For Deferred Replication, the best way to avoid data conflicts is to have different update data sets

per database.

There are three kinds of data conflicts:

• INSERT Conflicts

— An INSERT conflict occurs if the replication transaction tries to insert data that has the same

primary key as an existing record.

— If the replication transaction tries to insert data into a table that is already locked by another

local transaction, the replication transaction needs to wait to acquire a lock. An INSERT

conflict occurs due to lock timeout.

— An INSERT conflict occurs if the replication transaction tries to insert a duplicate value into a

primary key column.

• UPDATE Conflicts

— An UPDATE conflict occurs if the replication transaction tries to update a record with a

nonexistent primary key.

— An UPDATE conflict occurs if the replication transaction tries to update a record whose data

is different from the record’s before image (i.e. data prior to changes) updated by the master

transaction.

— An UPDATE conflict occurs if a duplicate key value is created by an update operation.

• DELETE Conflicts

— A DELETE conflict occurs if the replication transaction tries to delete a record that has a

nonexistent primary key.

— If the replication transaction tries to delete a record that is already locked by the local

transaction, the replication transaction needs to wait to acquire a lock. A DELETE conflict

occurs due to lock timeout.

Unlike distributed DBMSs that use the 2-Phase Commit (2-PC) or 3-Phase Commit (3-PC) pro-

tocols, the replication functionality cannot guarantee data consistency against conflicts for com-

mercial DBMSs. Contrariwise, 2-PC/3-PC have performance degradation issues and are cum-

bersome in the event of system or network failure.

Managing Replication 31

As a result, commercial DBMSs mainly use deferred (asynchronous) replication which relaxes

constraints on data consistency and keeps up solid performance.

“Conflict resolution” refers to a variety of methods for eliminating data conflicts. Deferred Replica-

tion does not offer a perfect solution to data conflicts. Once a conflict occurs, it is merely resolved

by synchronizing the data on the database servers. Altibase provides the following conflict resolu-

tion methods to resolve data conflicts:

• User-Oriented Scheme

• Master-Slave Scheme

• Timestamp-Based Scheme

Altibase performs the following operations for the above methods:

• Synchronizes a server’s data with another server.

• Logs information about conflicts for issue tracking.

However, LOB columns are excluded from conflict resolution. LOB columns cannot detect data

conflict because they neither log before images nor define primary or unique keys.

The policies for different conflict situations are provided in detail below.

Note: For a detailed description of the CREATE REPLICATION command, please refer to the

description of the CREATE REPLICATION statement.

2.3.1 User-Oriented Scheme

2.3.1.1 Syntax

CREATE REPLICATION replication_name

 WITH 'remote_host_ip', remote_host_port_no

 FROM user_name.table_name TO user_name.table_name,

 FROM user_name.table_name TO user_name.table_name,

 …

 FROM user_name.table_name TO user_name.table_name;

2.3.1.2 Description

1. INSERT Conflicts

If an INSERT conflict occurs, the INSERT statement fails and a conflict error message is output to

altibase_rp.log.

Use the REPLICATION_INSERT_REPLACE property to set the conflict resolution policy for an

32 Replication Manual

INSERT conflict that arises due to trying to insert data having the same primary key as an existing

record.

REPLICATION_INSERT_REPLACE=1 : Delete and insert

REPLICATION_INSERT_REPLACE=0 : Either does not delete or inserts; outputs an error mes-

sage.

2. UPDATE Conflicts

If an UPDATE conflict occurs, the UPDATE statement fails and a conflict error message is output

to altibase_rp.log.

Use the REPLICATION_UPDATE_REPLACE property to set the conflict resolution policy for an

UPDATE conflict that arises due to trying to update data with a different before image or update

data with a nonexistent primary key.

For example, the following policies can be used when there is a data of the value 10 and the rep-

lication transaction tries to update that value from 20 to 30.

REPLICATION_UPDATE_REPLACE=1 : Updates

REPLICATION_UPDATE_REPLACE=0 : Does not update; outputs a conflict error message.

3. DELETE Conflicts

If a DELETE conflict occurs, the DELETE statement fails and a conflict error message is written to

altibase_rp.log.

2.3.1.3 Summary

1. The user determines the conflict resolution policy on a case-by-case basis.

2. The altiComp utility is provided as a solution for with data inconsistency. For further infor-

mation, please refer to the Utilities Manual.

2.3.2 Master-Slave Scheme

2.3.2.1 Syntax

CREATE REPLICATION replication_name AS {MASTER|SLAVE}

 WITH 'remote_host_ip', remote_host_port_no

 FROM user_name.table_name TO user_name.table_name,

 FROM user_name.table_name TO user_name.table_name,

 …

 FROM user_name.table_name TO user_name.table_name;

Managing Replication 33

2.3.2.2 Description

1. Specify ”MASTER” or “SLAVE” in the command to specify whether the server is the Master

or Slave. On omission, the value specified by the REPLICATION_INSERT_REPLACE or

REPLICATION_UPDATE_REPLACE property is used.

2. The user can check whether a server is the Master or Slave from the CON-

FLICT_RESOLUTION column in the SYS_REPLICATIONS_ meta table. (0 = not specified; 1

= Master; 2 = Slave)

3. The handshake3 is only successful if the CONFLICT_RESOLUTION column has the fol-

lowing values: 0 with 0, 1 with 2, and 2 with 1. Any other combinations will fail. If one server

is specified as the Master but the other server is omitted , the following error will be output

when replication starts:

iSQL> ALTER REPLICATION rep1 START;

[ERR-6100D : [Sender] Failed to handshake with the peer server (Master/Slave conflict resolution does

not allowed [1:0])]

2.3.2.3 Master/Slave Replication Conflict Handling Method

1. Operating as Master

• INSERT conflict: Not committed.

• UPDATE conflict: Not committed.

• DELETE conflict: Not committed.

• Other: XLOG transferred from the Slave is processed as usual.

2. Operating as Slave

• INSERT conflict: If an insert conflict occurs because an attempt was made to insert data

having the same primary key as an existing record, the existing record is deleted and a new

record is added.

If an insert conflict occurs for any other reason, the INSERT statement fails, and a conflict

error message is recorded in altibase_rp.log.

• UPDATE conflict: If an update conflict occurs because an attempt was made to update a

record having a value different from the “Before Image” value on another database server,

from which data for replication are propagated, the conflict is ignored, and the UPDATE

3
Handshaking is the process of checking whether the other server is alive and whether the information

about the objects to be replicated between the local server and the remote server matches before replication

starts.

34 Replication Manual

statement succeeds despite the conflict.

If an update conflict occurs for any other reason, the UPDATE statement fails, and a conflict

error message is recorded in altibase_rp.log.

• DELETE conflict: If a delete conflict occurs because no record having that primary key ex-

ists, the DELETE statement fails, and a conflict error message is not recorded in

altibase_rp.log.

If a delete conflict occurs for any other reason, the DELETE statement fails, and a conflict

error message is recorded in altibase_rp.log.

• Other: The XLOG transferred from the Master is processed as usual.

2.3.2.4 Example

Suppose that the IP address and replication port number of the local server are 192.168.1.10 and

21300, and that the IP address and replication port number of the remote server are 192.168.1.20

and 22300, that there is a master-slave relationship between the local and remote servers, and

that a table called employees and one called departments are replication target tables. In this

situation, replication is specified as follows:

• Local Server (IP: 192.168.1.10)

iSQL> CREATE REPLICATION rep1 AS MASTER

 WITH '192.168.1.20',22300

 FROM sys.employees TO sys.employees,

 FROM sys.departments TO sys.departments;

Create success.

• Remote Server (IP: 192.168.1.20)

iSQL> CREATE REPLICATION rep1 AS SLAVE

 WITH '192.168.1.10',21300

 FROM sys.employees TO sys.employees,

 FROM sys.departments TO sys.departments;

Create success.

Whether a server is a Master or Slave can be determined by checking the CON-

FLICT_RESOLUTION field, which is located in the SYS_REPLICATIONS_ meta table. (0 = not

specified; 1 = Master; 2 = Slave)

iSQL> SELECT replication_name, conflict_resolution FROM system_.sys_replications_;

REPLICATION_NAME CONFLICT_RESOLUTION

REP1 1

1 row selected.

Managing Replication 35

2.3.3 Timestamp-Based Scheme

2.3.3.1 Syntax

CREATE REPLICATION replication_name

 WITH ‘remote_host_ip’, remote_host_port_no

 FROM user_name.table_name TO user_name.table_name,

 FROM user_name.table_name TO user_name.table_name,

 …

 FROM user_name.table_name TO user_name.table_name;

2.3.3.2 Description

The Timestamp-Based Scheme is provided to ensure that both servers have the same data in an

Active-Active replication environment.

The following restrictions apply when using the Timestamp-Based Scheme:

• Every table must contain a TIMESTAMP column.

• The REPLICATION_TIMESTAMP_RESOLUTION property must be set to 1.

Because Altibase supports the Timestamp-Based Scheme on the basis of tables, even if a repli-

cation target table has a TIMESTAMP column, if the value of the REPLICA-

TION_TIMESTAMP_RESOLUTION property for that table has been set to 0, a conventional con-

flict resolution scheme will be used.

Supposing for example that a user wishes to replicate a table called "foo" and another called "bar"

between two servers, if the REPLICATION_TIMESTAMP_RESOLUTION property is set to 1 for

the "foo" table, the Timestamp-Based Scheme will be used for that table, whereas a conventional

conflict resolution scheme will be used for the "bar" table.

CREATE TABLE foo(a DOUBLE PRIMARY KEY, b TIMESTAMP);

CREATE TABLE bar(a DOUBLE PRIMARY KEY, b CHAR(3));

CREATE REPLICATION rep WITH ’127.0.0.1’, 20300 FROM sys.foo TO sys.foo, FROM sys.bar TO

sys.bar;

2.3.3.3 Timestamp-based Replication Processing Method

Altibase supports the Timestamp-Based Scheme only for INSERT and UPDATE operations.

• INSERT

1. If data to be inserted have the same key as existing data, the timestamp value of the Af-

ter-Image of the data is compared with that of the existing data.

2. If the TIMESTAMP value of the After-Image of the data is equal to or greater (i.e. more re-

cent) than that of the existing data, the existing data are deleted, and new data, having the

36 Replication Manual

value of the After-Image of the data, are added.

• UPDATE

1. The TIMESTAMP value of the After-Image of the data is compared with that of the data to be

updated.

2. If the TIMESTAMP value of the After-Image of the data is equal to or greater (more recent)

than that of the existing data, the data are updated with the After-Image of the data.

3. When UPDATE is performed, the TIMESTAMP value in the After-Image of the data is kept.

In other words, independent system time values are not used.

2.3.3.4 Restrictions

1. When a TIMESTAMP column is added to a table, 8 additional bytes of storage space are

needed per record.

2. If the time is set differently on the two servers to be replicated, database inconsistencies can

result.

Managing Replication 37

2.4 Related Performance Views

The following performance views are used to monitor the progress of replication:

• V$REPEXEC

• V$REPGAP

• V$REPGAP_PARALLEL

• V$REPLOGBUFFER

• V$REPOFFLINE_STATUS

• V$REPRECEIVER

• V$REPRECEIVER_COLUMN

• V$REPRECEIVER_PARALLEL

• V$REPRECEIVER_STATISTICS

• V$REPRECEIVER_TRANSTBL

• V$REPRECEIVER_TRANSTBL_PARALLEL

• V$REPRECOVERY

• V$REPSENDER

• V$REPSENDER_PARALLEL

• V$REPSENDER_STATISTICS

• V$REPSENDER_TRANSTBL

• V$REPSENDER_TRANSTBL_PARALLEL

• V$REPSYNC

For detailed information on each performance view, please refer to the Altibase Administrator's

Manual.

38 Replication Manual

2.5 EAGER Replication Failback

2.5.1 Incremental Sync

Incremental Sync is a data synchronization operation for removing inconsistencies caused by

replication node failures of EAGER mode. Targets of this operation are records with any possibility

of committed on only one node. Incremental Sync analyzes data that can be different from the

other node, requests and synchronizes those missing transaction logs.

This operation is controlled by REPLICATION_FAILBACK_INCREMENTAL_SYNC property, and

it is activated by default. The values of this property must be same between replication nodes.

Internally, there are two roles, a master and a slave, for this operation. The node with longer ser-

vice time is regarded as a master, and the other is regarded as a slave. The decision of a master

and a slave is determined by comparing REMOTE_FAULT_DETECT_TIME column value of

SYSTEM_.SYS_REPLICATIONS_ table after replication failure is recovered. Those time values

used for determining the master and slave use operating system time. Thus, it is essential to

synchronize time between replication nodes. It is recommended to use network time server to

synchronize time between replication nodes.

After replication failure is resolved, the slave server analyzes transaction logs and records, re-

quests data that has not been applied to itself from the master, and synchronizes data. The job of

the master is sending data that the slave requested.

Please note that if the replication status of any replication nodes is stopped, then system hang can

occur during Incremental Sync operation.

2.5.2 After Incremental Sync

After resolving data consistencies of active transactions right before replication failures, replication

gaps must be eliminated. If the Incremental Sync operation is turned off by setting 0 value to

REPLICATION_FAILBACK_INCREMENTAL_SYNC property, the server will skip Incremental

Sync operation and start eliminating replication gap.

The transaction logs for replication objects tend to pile up as the duration of replication failure gets

longer. During failback, all transaction logs are applied in LAZY mode replication for performance.

Once the replication gap is removed, the replication mode will be returned to EAGER mode.

REPLICATION_FAILBACK_MAX_TIME property can be used to limit replication failback time.

This property only applies during server startup, where restoring service is more important than

Managing Replication 39

synchronizing data. If the duration of replication failback exceeds this property value, then the

server will stop the replication failback operation and continue startup operations.

40 Replication Manual

2.6 EAGER Replication Parallel Execution

EAGER replication mode commits data when all replication nodes are ready to commit. EAGER

replication parallel execution allows multiple replication senders that will improve performance of

replication because multiple transaction logs can be sent at the same time. The number of repli-

cation senders is specified by the REPLICATION_EAGER_PARALLEL_FACTOR property.

Setting a large value for this property often improves replication performance. However, please

avoid using it where many concurrent transactions update the same records. It should be used

carefully because of following reason.

Each replication sender sent log files of a transaction in order. However, the order of transactions

are not preserved from one replication node to the other replication node if there are many repli-

cation senders. For example, there are transaction A and B in Active-Standby environment. The

order of processed transactions on the active node is A and B, but it can be sent to the standby

node as B and A order. This is a problem when the result of processing transactions A and B in the

active node is different from the result of processing transactions B and A in standby node. When

this happens, EAGER replication returns commit failure. If this happens often, the replication

performance will be degraded.

Managing Replication 41

2.7 Parallel Replication

Parellel replication indicates using multiple sending and receiving threads when executing the

replication. Altibase supports the following parallel replication based upon the repication mode.

• Lazy mode: This is one of the additonal features which allows receiver parallel replication.

• Eager mode: This allows sending parallel replication by controlling properties.

In the eager mode, the parallel replication is used by contorling REPLICA-

TION_EAGER_PARALLEL_FACTOR property in order to manage multiple sending threads.

In case of replication in the eager mode, it is available to replicate a transaction unit since commit

execution is possible if nodes in both sides are ready. Altibase materializes the parallel replication

with multiple replication sender threads so that each thread can process one transaction. Also, this

type of parellel replication offers much enhanced replication performance with rapid speed that

that of the conventional synchronous replication.

The parellel replication method in lazy mode is described in the Extra Features section.

2.7.1 Note

If using the parellel replication, there might be an impossible situation to commit due to reversred

transaction sequence in the process of replicating. Thus, the application program should

impliment logic in order to overtly execute a rollback if a commit failure is returned when using the

parallel replication.

42 Replication Manual

2.8 Performance View related to Replication

The following performance views are provided to monitor replication progress. For more infor-

mation on performance views, see the General Reference.

• V$REPEXEC

• V$REPGAP

• V$REPGAP_PARALLEL

• V$REPLOGBUFFER

• V$REPOFFLINE_STATUS

• V$REPRECEIVER

• V$REPRECEIVER_COLUMN

• V$REPRECEIVER_PARALLEL

• V$REPRECEIVER_STATISTICS

• V$REPRECEIVER_TRANSTBL

• V$REPRECEIVER_TRANSTBL_PARALLEL

• V$REPRECOVERY

• V$REPSENDER

• V$REPSENDER_PARALLEL

• V$REPSENDER_STATISTICS

• V$REPSENDER_TRANSTBL

• V$REPSENDER_TRANSTBL_PARALLEL

• V$REPSYNC

Deploying Replication 43

3. Deploying Replication
This chapter contains the following sections:

• Considerations

• CREATE REPLICATION

• Starting, Stopping and Modifying Replication using “ALTER REPLICATION”

• DROP REPLICATION

• Executing DDL Statements on Replication Target Tables

• Extra Features

• Replication in a Multiple IP Network Environment

• Properties

44 Replication Manual

3.1 Considerations

A number of conditions apply when establishing replication. If these conditions are not satisfied,

replication will not be possible.

3.1.1 Prerequisites

1. If a conflict occurs during an INSERT, UPDATE, or DELETE operation, the operation is

skipped, and a message is written to an error file.

2. If an error occurs during replication, partial rollback is performed. For example, if a duplicate

row is found while inserting rows into a table, only the insertion of the duplicate row is can-

celled, while the remainder of the task is completed as usual.

3. Replication is much slower than the main data provision service.

3.1.2 Data Requirements

1. A table to be replicated must have a primary key.

2. The primary key must not have been modified.

3. The tables on the local and remote servers must have column types, primary keys, and NOT

NULL constraints.

3.1.3 Connection Requirements

1. The maximum number of replication connections possible from one Altibase database is

determined by the REPLICATION_MAX_COUNT property.

2. The database character sets and the national character sets must be the same on both

servers in order for replication to be possible. Which character set is currently in use can be

checked by viewing the values of NLS_CHARACTERSET and

NLS_NCHAR_CHARACTERSET in the V$NLS_PARAMETERS performance view.

3.1.4 Replication Target Column Constraints

1. When an INSERT transaction is replicated, columns that are not replication targets will be

filled with NULL values.

2. When replication target columns and columns that are not replication targets contain unique

Deploying Replication 45

indexes, the replication object will be successfully created, but cannot be started.

In order to replicate tables that have CHECK constraints, the following conditions must be met:

• The name and condition character set of CHECK constraints on both servers must be the

same.

• If a CHECK constraint is composed of a replication target column and a replication

non-target column, the replication object will be successfully created, but will fail to start.

In order to replicate tables with function-based indexes, the following conditions must be met:

• The names and string expressions of function-based indexes on both servers must be the

same.

• The same function-based indexes must exist on both servers. If the functions differ, they will

collide and data consistency cannot be guaranteed.

• If index keys of function-based indexes are composed with columns to and not to be repli-

cated, replication creation succeeds, but replication startup fails.

3.1.5 Replication Constraints in EAGER Mode

The following constraints apply to replication in EAGER mode.

1. To ensure data consistency, replication in EAGER mode is not recommended for more than

three nodes.

2. Data is not synchronized unless replication is performed in EAGER mode on both the remote

and local servers.

3. If a network failure occurs while replication is being performed in EAGER mode (and even if

the server manages to service properly), data consistency cannot be guaranteed. This is

because when a network failure occurs, each node interprets the failure as an error on the

other node, and both nodes update data.

4. A table can only be replicated as a single corresponding table when replication is performed

in EAGER mode. If a table is replicated into two or more tables in EAGER mode, data will be

inconsistent and incremental synchronization will fail.

5. Servers on which replication is being performed must have their time synchronized. If an

error occurs and the time has not been synchronized, replication can be defective due to the

time difference at error detection.

6. Data can be lost if the server abnormally terminates before a committed XLog is applied on

46 Replication Manual

disk in EAGER mode. To prevent data loss, specify the recovery option or adjust the values

for commit-related properties (COMMIT_WRITE_WAIT_MODE, REPLICA-

TION_COMMIT_WRITE_WAIT_MODE, and REPLICATION_SYNC_LOG).

3.1.6 Partitioned Table Constraints

The following conditions must be met in order to successfully replicate partitioned tables.

1. The partitioning method must be the same on both the remote server and the local server.

2. For range or list partitions, the partitioning conditions must be the same. If only some parti-

tions are to be replicated, the constraints on only those partitions need to be the same. The

same applies to default partitions.

3. For hash partitions, the number of partitions must be the same.

3.1.7 Restrictions on Using Replication for Data Recovery

In order to use replication to perform data recovery, the following restrictions apply:

1. If both the local server and the remote server shut down abnormally, recovery using replica-

tion will not be possible.

2. Conflicting data cannot be recovered.

3. A single table cannot be recovered using two or more replication objects.

4. If transactions that have not been transferred are lost, the data cannot be recovered.

3.1.8 Additional Considerations when Using Replication for Data Recovery

1. If different update operations are performed on the same record on two replicated systems

in an Active-Active replication environment, data may be mismatched between the systems.

2. If a network error occurs or replication is stopped according to the setting of the REPLICA-

TION_RECOVERY_MAX_TIME property by the user, data might not be recovered.

3.1.9 Allowable DDL Statements

Normally, DDL statements cannot be executed on replication target tables. However, the following

DDL statements can be executed on replication target tables.

• ALTER INDEX SET PERSISTENT = ON/OFF

Deploying Replication 47

• ALTER INDEX REBUILD PARTITION

• GRANT OBJECT

• REVOKE OBJECT

• CREATE TRIGGER

• DROP TRIGGER

3.1.9.1 Restrictions

When DDL statements that are allowed for use with replication are executed on tables, those ta-

bles are locked. If the Sender thread transfers a replication log at this time, the Receiver thread

won’t be able to properly implement the log’s changes.

48 Replication Manual

3.2 CREATE REPLICATION

Before starting replication, corresponding replication objects must first be created on two servers.

3.2.1 Syntax

CREATE [LAZY|EAGER] REPLICATION replication_name

 [FOR ANALYSIS | FOR PROPAGABLE LOGGING | FOR PROPAGATION]

 [AS MASTER|AS SLAVE]

 [OPTIONS option_name [option_name ...]]

WITH {‘remote_host_ip’, remote_host_port_no}

...

FROM user_name.table_name [PARTITION partition_name] TO user_name.table_name [PARTITION

partition_name]

[,FROM user_name.table_name [PARTITION partition_name] TO user_name.table_name [PARTITION

partition_name]]

...;

3.2.2 Prerequisites

Only the SYS user can execute replication-related statements.

3.2.3 Description

Before replication can be performed, a so-called "replication pair", comprising of a pair of replica-

tion objects between which a connection is established, must be set up.

Replication is conducted on a table-by-table or a partition-by-partition basis. Tables or partitions

are matched one-to-one.

When creating a replication object, one of the LAZY and EAGER modes can be selected as the

default mode. If the replication mode is not specified for a session, this default mode will be used.

If no default mode is specified, replication will be performed in LAZY mode.

• replication_name

This specifies the name of the replication object to be created. The same name must be used on

both the local server and the remote server.

• FOR ANALYSIS

This creates the Xlog Sender. For futher information about properties, please refer to the Log

Analyzer User’s Manaul.

• FOR PROPAGABLE LOGGING | FOR PROPAGATION

Deploying Replication 49

Replication recevier writes the logs received with FOR PROPAGABLE LOGGING.

FOR PROPAGATION is used to send propagable logs to other target server.

This function cannot be used with recovery option.

• AS MASTER or AS SLAVE

This specifies whether the server is the Master or the Slave. If not specified, the value specified

using the REPLICATION_INSERT_REPLACE or REPLICATION_UPDATE_REPLACE property

will be used. When attempting to perform handshaking, the following combinations of values will

be successful: 0 with 0, 1 with 2, and 2 with 1. Other combinations will fail. (0 = not set; 1 = Master;

2 = Slave)

• remote_host_ip

This is the IP address of the remote server.

• remote_host_port_no

This is the port number at which the remote server Receiver thread listens. More specifically, this

is the port number specified in REPLICATION_PORT_NO in the altibase.properties file on the

remote server.

• user_name

This is the name of the owner of the table to be replicated.

• table_name

This is the name of the table to be replicated.

• partition_name

This is the name of the partition to be replicated.

• option_name

This is the name of the additional functions pertaining to the replication object. For further infor-

mation, please refer to Extra Features.

3.2.4 Error Codes

Please refer to the Altibase Error Message Reference.

50 Replication Manual

3.2.5 Example

Suppose that the IP address and port number of the local server are 192.168.1.60 and 25524, and

that the IP address and port number of the remote server are 192.168.1.12 and 35524. To repli-

cate a table called employees and one called departments between the two servers, the required

replication definition would be as follows:

• Local server (IP: 192.168.1.60)

iSQL> CREATE REPLICATION rep1

 WITH '192.168.1.12', 35524

 FROM sys.employees TO sys.employees,

 FROM sys.departments TO sys.departments;

Create success.

• Remote server (IP: 192.168.1.12)

iSQL> CREATE REPLICATION rep1

 WITH '192.168.1.60', 25524

 FROM sys.employees TO sys.employees,

 FROM sys.departments TO sys.departments;

Create success.

Deploying Replication 51

3.3 Starting, Stopping and Modifying Replication using

“ALTER REPLICATION”

3.3.1 Syntax

ALTER REPLICATION replication_name

 SYNC [PARALLEL parallel_factor]

 [TABLE user_name.table_name [PARTITION partition_name], … ,

user_name.table_name [PARTITION partition_name]];

ALTER REPLICATION replication_name

 SYNC ONLY [PARALLEL parallel_factor]

 [TABLE user_name.table_name [PARTITION partition_name], … , user_name.table_name

[PARTITION partition_name]];

ALTER REPLICATION replication_name START [RETRY];

ALTER REPLICATION replication_name QUICKSTART [RETRY];

ALTER REPLICATION replication_name STOP;

ALTER REPLICATION replication_name RESET;

ALTER REPLICATION replication_name DROP TABLE

 FROM user_name.table_name [PARTITION partition_name] TO user_name.table_name [PARTITION

partition_name];

ALTER REPLICATION replication_name ADD TABLE

 FROM user_name.table_name [PARTITION partition_name] TO user_name.table_name [PARTITION

partition_name]

ALTER REPLICATION replication_name FLUSH [ALL] [WAIT timeout_sec];

3.3.2 Prerequisites

Only the SYS user can execute replication-related statements.

3.3.3 Description

• SYNC

After all of the records in the table to be replicated have been transmitted from the local

server to the remote server, replication starts from the current position in the log. In order to

prevent another transaction from changing data in the table on which synchronization is to

be performed right at the time of determination of the log from which replication will start after

synchronization, the Replication Sender Thread obtains an S Lock on the table on which

synchronization is to be performed for a short time before synchronization. Therefore, if a

synchronization attempt is made while another transaction is updating data in the table to be

synchronized, the Replication Sender Thread will wait for the amount of time specified in the

REPLICATION_SYNC_LOCK_TIMEOUT property, and will then start replication at the time

at which the change transaction ends. If the change transaction is not completed within the

amount of time specified in the REPLICATION_SYNC_LOCK_TIMEOUT property, synchro-

nization will fail. If, during synchronization, records on the local server are found to have the

52 Replication Manual

same primary key values as records on the remote server, any conflicts are eliminated ac-

cording to the rules for conflict resolution.

• TABLE

This specifies the table that is the target for SYNC replication.

• PARTITION

This specifies the partition that is the target for SYNC replication.

• PARALLEL

Parallel_factor may be omitted, in which case a value of 1 is used by default. The maximum

possible value of parallel_factor is the number of CPUs * 2. If it is set higher than this number,

the maximum number of threads that can be created is still equal to the number of CPUs * 2.

If it is set to 0 or a negative number, an error message results.

• SYNC ONLY

All records in replication target tables are sent from the local server to the remote server. (In

this case the Sender thread is not created.) If the same records exist on both the local server

and the remote server, sources of conflict are eliminated according to the rules for conflict

resolution.

Because only a single thread is responsible for handling SYNC or SYNC ONLY on disk ta-

bles, when some of the tables on which SYNC replication is to be performed are disk tables,

setting parallel_factor higher than the number of disk tables confers a performance ad-

vantage.

• START

Replication will start from the time point of the most recent replication.

• QUICKSTART

Replication will start from the current position in the log.

• START/QUICKSTART RETRY

When starting or quickstarting replication with the RETRY option, even if handshaking fails, a

Sender Thread is created on the local server. Afterwards, once handshaking between the

local server and the remote server is successful, replication starts.

iSQL shows a success message even if the first handshake attempt fails. Therefore, the user

must check the result of execution of this command by checking the trace logs or the

V$REPSENDER performance view.

When starting replication without the RETRY option, if the first handshake attempt fails, an

error is raised and execution is stopped.

• STOP

This stops replication. If a SYNC task is stopped, the transmission of all data to be replicated

Deploying Replication 53

to the remote server cannot be guaranteed. If a SYNC replication that is underway is

stopped, in order to perform SYNC again, all records must be deleted from all replication

target tables, and then the SYNC is performed again.

• RESET

This command resets replication information (such as the restart SN). It can only be exe-

cuted while replication is stopped, and can be used instead of executing DROP REPLICA-

TION followed by CREATE REPLICATION.

• DROP TABLE

This command excludes a table or a partition from a replication object. It can only be exe-

cuted while replication is stopped. Because regular DDL statements cannot be executed on

replication target tables, after a table is excluded from a replication object, DDL statements

can be executed on the table or a partition.

• ADD TABLE

This command adds a table or a partition to a replication object. It can only be executed

while replication is stopped.

• FLUSH

The current session waits for the number of seconds specified by timeout_sec so that the

replication Sender thread can send logs up to the log at the time at which the FLUSH

statement is executed to the other server. If used together with the ALL keyword, the current

session waits until the most recent log, rather than the log at the time at which the FLUSH

statement is executed, is sent to the other server.

3.3.4 Error Codes

Please refer to the Error Message Reference.

3.3.5 Example

Assuming that the name of a replication is rep1, replication can be started in one of the following

three ways:

• Replication is started after the data on the local server are transferred to the remote server.

iSQL> ALTER REPLICATION rep1 SYNC;

Alter success.

• Replication is started from the time point at which the replication rep1 was most recently

executed.

54 Replication Manual

iSQL> ALTER REPLICATION rep1 START;

Alter success.

• Replication is started from the current time point.

iSQL> ALTER REPLICATION rep1 QUICKSTART;

Alter success.

Use the following commands to check the status of replication after it has started.

iSQL> SELECT rep_name, status, net_error_flag, sender_ip, sender_port,

 peer_ip, peer_port

 FROM V$REPSENDER;

REP_NAME STATUS

--

NET_ERROR_FLAG

SENDER_IP SENDER_PORT

PEER_IP PEER_PORT

REP1 1

0

192.168.1.33 11477

192.168.1.34 21300

1 row selected.

iSQL> SELECT rep_name, my_ip, my_port, peer_ip, peer_port

 FROM V$REPRECEIVER;

REP_NAME

--

MY_IP MY_PORT

PEER_IP PEER_PORT

REP1

192.168.1.33 21300

192.168.1.34 7988

1 row selected.

• Assuming that the name of a replication is rep1, use the following command to stop replica-

tion.

iSQL> ALTER REPLICATION rep1 STOP;

Alter success.

• Assuming that the name of a replication is rep1, use the following commands to drop a table

Deploying Replication 55

from a replication object.

iSQL> ALTER REPLICATION rep1 STOP;

Alter success.

iSQL> ALTER REPLICATION rep1 DROP TABLE FROM sys.employees TO sys.employees;

Alter success.

• Assuming that the name of a replication is rep1, use the following commands to add a table

to a replication object.

iSQL> ALTER REPLICATION rep1 STOP;

Alter success.

iSQL> ALTER REPLICATION rep1 ADD TABLE FROM sys.employees TO sys.employees;

Alter success.

• If it is desired to check the cumulative time that each Sender replication object has spent

waiting for WAIT_NEW_LOG events, execute the following query. This example assumes

that the TIMER_THREAD_RESOLUTION property has been set to 1000000 microseconds.

select rep_name, avg(WAIT_NEW_LOG)/1000000

from x$repsender_statistics

where wait_new_log > 0

group by rep_name

order by rep_name;

• If it is desired to check the cumulative time that each Receiver replication object has spent

waiting for INSERT_ROW events, execute the following query. This example assumes that

the TIMER_THREAD_RESOLUTION property has been set to 1000000 microseconds.

select rep_name, avg(INSERT_ROW)/1000000

from x$repreceiver_statistics

where recv_xlog > 0

group by rep_name

order by rep_name;

56 Replication Manual

3.4 DROP REPLICATION

3.4.1 Syntax

DROP REPLICATION replication_name;

3.4.2 Prerequisites

Only the SYS user can execute replication-related statements.

3.4.3 Description

This command is used to remove a replication object.

However, once a replication has been dropped, it cannot be executed using ALTER REPLICA-

TION START. Additionally, in order to drop a replication object, it is first necessary to stop it using

ALTER REPLICATION STOP.

3.4.4 Error Codes

Please refer to the Error Message Reference.

3.4.5 Example

In the following example, a replication object named rep1 is removed.

iSQL> ALTER REPLICATION rep1 STOP;

Alter success.

iSQL> DROP REPLICATION rep1;

Drop success.

If an attempt is made to remove a replication object without first stopping it, the following error

message appears.

iSQL> DROP REPLICATION rep1;

[ERR-610FE : Replication has already started.]

Deploying Replication 57

3.5 Executing DDL Statements on Replication Target Ta-

bles

3.5.1 Syntax

The following DDL statements that Altibase supports for use on replication target tables are as

follows:

ALTER TABLE table_name ADD COLUMN;

ALTER TABLE table_name DROP COLUMN;

ALTER TABLE table_name ALTER COLUMN column_name SET DEFAULT;

ALTER TABLE table_name ALTER COLUMN column_name DROP DEFAULT;

ALTER TABLE table_name ALTER TABLESPACE;

ALTER TABLE table_name ALTER PARTITION;

ALTER TABLE table_name TRUNCATE PARTITION;

ALTER TABLE table_name SPLIT PARTITION partition_name(condition) INTO

(PARTITION partition_name, PARTITION partition_name);

ALTER TABLE table_name MERGE PARTITIONS partition_name, partition_name INTO PARTITION

partition_name;

ALTER TABLE table_name DROP PARTITION partiton_name;

TRUNCATE TABLE;

CREATE INDEX;

DROP INDEX;

3.5.2 Description

Altibase supports the execution of DDL statements on replication target tables. However, the fol-

lowing property settings must first be made.

• The REPLICATION_DDL_ENABLE property must be set to 1.

• The replication session property, set using the ALTER SESSION SET REPLICATION

statement, must be set to some value other than NONE.

• The target table should be locked by the LOCK TABLE...UNTIL NEXT DDL statement in

order to execute SPLIT PARTITION, MERGE PARTITION, and DROP PARTITION on a

58 Replication Manual

replication target table. Moreover, the data should be checked to identify since there would

be a replication gap between the local and remote server.

If the SPLIT, MERGE, or DROP is executed on a replication target partition, the identical replica-

tion partition is automatically removed or added to the local or remote server.

3.5.3 Restrictions

DDL statements cannot be executed on tables for which the replication recovery option has been

specified. To execute DDL statements in such a case, drop the tables from the replication object

and execute the DDL statements. Futhermore, DDL statements cannot be executed while repli-

cation is running in EAGER mode. To execute DDL statements in such a case, stop replication,

execute the DDL statements, and start replication again.

The restrictions that govern the use of particular DDL statements are as follows:

• ALTER TABLE table_name ADD COLUMN

— A column having a NOT NULL constraint or a CHECK constraint cannot be added.

— A unique index cannot be added.

— A foreign key cannot be added.

— A compressed column cannot be added.

• ALTER TABLE table_name DROP COLUMN

— A column having a NOT NULL constraint or a CHECK constraint cannot be dropped.

— A unique index cannot be dropped.

— The primary key cannot be dropped.

— A compressed column cannot be dropped.

• ALTER TABLE table_name [SPLIT | MERGE | DROP] PARTITION ...

— Replication cannot be executed during the operation.

— LOCK TABLE is executed on a target table.

— The replication target should identify the replication gap between the local and remote server.

In order to relieve the replication gap, the FLUSH ALL option of replication should be exe-

cuted before executing a DDL statement.

— MERGE target partition should exists in all the replication target objects. There should be

more than two partitions or tables in the replication object in order for DROP PARTITION to

be executed.

• TRUNCATE TABLE

Deploying Replication 59

— This is supported only for tables without compressed columns.

• CREATE INDEX

— This is supported only for indexes that are not unique.

• DROP INDEX

— This is supported only for indexes that are not unique.

3.5.4 Example

Supposing that the name of a replication target table is t1, DDL statements can be executed on

the replication target table as follows.

Execution of the TRUNCATE TABLE statement.

(SYS User)

iSQL> ALTER SYSTEM SET REPLICATION_DDL_ENABLE = 1;

Alter success.

(Table Owner)

iSQL> ALTER SESSION SET REPLICATION = DEFAULT;

Alter success.

iSQL> TRUNCATE TABLE t1;

Truncate success.

(SYS User)

iSQL> ALTER SYSTEM SET REPLICATION_DDL_ENABLE = 0;

Alter success.

(SPLIT TABLE) Create a table T1 by splitting partition P3 and P4 in partition P2.

iSQL> LOCK TABLE T1 UNTIL NEXT DDL;

iSQL> ALTER REPLICATION REP1 FLUSH ALL;

iSQL> ALTER REPLICATION REP1 STOP;

iSQL> ALTER TABLE T1 SPLIT PARTITION P2 INTO (PARTITION P3, PARTITION P4);

(MERGE TABLE) Create a table T1 by merging partition 2 and 3 in partition P2 and P3.

iSQL> LOCK TABLE T1 UNTIL NEXT DDL;

iSQL> ALTER REPLICATION REP1 FLUSH ALL;

iSQL> ALTER REPLICATION REP1 STOP;

iSQL> ALTER TABLE T1 MERGE PARTITIONS P2, P3 INTO PARTITION P23;

(DROP TABLE). Drop the partition P1.

iSQL> LOCK TABLE T1 UNTIL NEXT DDL;

iSQL> ALTER REPLICATION REP1 FLUSH ALL;

iSQL> ALTER REPLICATION REP1 STOP;

60 Replication Manual

iSQL> ALTER TABLE T1 DROP PARTITIONS P1;

Deploying Replication 61

3.6 Extra Features

Altibase provides the following extra replication features:

• Recovery Option

• Offline Option

• Replication Gapless Option

• Parallel Receiver Applier Option

• Replication Transaction Grouping Option

The status of replication option can be confirmed by the value of the OPTIONS column in

SYS_REPLICATIONS_meta table. Refer to the General Reference for in-deph information.

3.6.1 Recovery Option

3.6.1.1 Syntax

ALTER REPLICATION replication_name SET RECOVERY {ENABLE|DISABLE};

3.6.1.2 Description

If abnormal server termination occurs during the replication, the user can recover data by using

the main transaction which was executed in normally operating server or replicated transactin logs.

This feature is highly effieicnt if transaction logs are specified not to be written to disk in COM-

MIT_WRITE_WAIT_MODE or REPLICATION_COMMIT_WRITE_WAIT_MODE property. For

example, a committed transaction can be lost if the system is abnormally shut down. However, in

that case, the lost data can be consistent by the replication recovery option.

However, the recovery option cannot be changed while the replication is being processed. In case

of not using the recovery option, the recovery related materials the system retains are all released.

Refer to the General Reference for in-depth information on properties.

3.6.1.3 Restriction

The recovery option cannot be used at the same time with the offline option .

62 Replication Manual

3.6.1.4 Example

Assuming that the name of a replication object is rep1, the replication recovery option is used as

follows:

• To enable the replication recovery option:

iSQL> ALTER REPLICATION rep1 SET RECOVERY ENABLE;

Alter success.

• To disable the replication recovery option:

iSQL> ALTER REPLICATION rep1 SET RECOVERY DISABLE;

Alter success.

3.6.2 Offline Option

3.6.2.1 Syntax

ALTER REPLICATION replication_name

 SET OFFLINE ENABLE WITH 'log_dir';

ALTER REPLICATION replication_name SET OFFLINE DISABLE;

ALTER REPLICATION replication_name START WITH OFFLINE;

3.6.2.2 Description

One of the other extra replication features provided with Altibase is the offline option. In an Ac-

tive-Passive replication environment, when a server providing service (the “Active“ server) de-

velops a fault, the logs cannot be sent to the remote (“Standby“) server. The use of offline replica-

tion allows the logs that could not be sent to the Standby Server before the fault occurred to be

accessed by and implemented in the Standby Server afterwards. If the Standby Server directly

accesses the log files on the Active Server by copying the files via FTP or using a shared disk file

system, a network file system, etc, the logs that could not be sent can be processed using the

OFFLINE option. However, the Standby Server can use the offline option only if the Active Server

has performed replication on the Standby Server side.

• log_dir

This enables the Standby Server to access the log files directly by specifying the log path on

the Active Server.

• START WITH OFFLINE

This allows replication to take place using the specified offline path. Offline replication is a

one-time operation which is terminated as soon as all the unsent logs are applied. The rep-

lication Sender and Receiver threads that were being executed on the Standby Server are

automatically terminated when this command is issued. Replication can be restarted once

offline replication is terminated.

Deploying Replication 63

• SET OFFLINE DISABLE

This disables the offline replication option. This statement can only be executed while repli-

cation is stopped.

The below figure is an example of the offline option in use.

Figure 3-1 Data Accordance Between Both Servers

3.6.2.3 Offline Option Restrictions

• This option can only be used when executing replication in LAZY mode.

• Offline replication is not supported for replication objects which designate compressed tables

as replication targets.

• The offline option cannot be used at the same time as the recovery option.

• At the moment that offline replication starts, any replication Receiver thread having the same

replication_name must be in a stopped state. If such a thread is still running, offline replica-

tion will terminate.

• If the log file directory on the Active Server cannot be accessed due to a disk error, offline

replication will fail.

• The size of the log files on the Active and Standby Servers must be the same. Before the

offline option is used, it must be ensured that the size of the log files is the same as the size

that was specified at the time that the database was created.

• If the user changes log files arbitrarily (i.e. renames or deletes them, or copies log files from

64 Replication Manual

another system), abnormal shutdown or some other problem may occur.

• The Standby Server should not be restarted before starting offline replication, because the

information used to analyze the logs that could not be received will disappear when starting

up the Standby Server.

• The attempt to start a replication for which the offline option has been enabled or a replica-

tion that was created with the offline option will fail if the information about the SM version,

OS, the number of OS bits (i.e. 32 or 64), the size of the log files differs between the two

database servers.

3.6.2.4 Example

Assuming that the name of a replication object is rep1 and that the path of Active Server logs is

active_server/altibase_home/logs, the offline option is used as follows:

• Setting the offline option when creating a replication object:

iSQL> CREATE REPLICATION rep1 OPTIONS OFFLINE 'actiive_server/altibase_home/logs'

WITH '127.0.0.1',20300 FROM SYS.A TO SYS.B;

• Setting the offline option for an existing replication object:

iSQL> ALTER REPLICATION rep1 SET OFFLINE ENABLE WITH 'active_server/altibase_home/logs';

• Executing offline replication using the specified path:

iSQL> ALTER REPLICATION rep1 START WITH OFFLINE;

• Specifying that the offline option is not to be used:

iSQL> ALTER REPLICATION rep1 SET OFFLINE DISABLE;

3.6.3 Replication Gapless Option

3.6.3.1 Syntax

CREATE REPLICATION replication_name OPTIONS GAPLESS ...;

ALTER REPLICATION replication_name SET GAPLESS [ENABLE|DISABLE};

3.6.3.2 Description

The replication gapless option dissolves replication gaps. If this option is specified and the sender

expects the replication gap to still exist after the amount of time set for the REPLICA-

TION_GAPLESS_ALLOW_TIME property, the transaction commit is delayed to buy time for the

replication gap to dissolve. The user can set an appropriate value for the REPLICA-

TION_GAPLESS_MAX_WAIT_TIME property to prevent too much time being spent waiting for the

Deploying Replication 65

replication gap to dissolve before committing the transaction. However, the user should be re-

minded that delaying transaction commits can degrade service performance.

For further information about properties, please refer to the General Reference.

3.6.3.3 Restrictions

• The replication gapless option can only be specified when replication is being performed in

LAZY mode.

3.6.3.4 Example

Assume that there is a replication object named rep1. Specify the replication gapless option to

dissolve the replication gap for rep1.

• Specify the replication gapless option.

iSQL> CREATE REPLICATION rep1 OPTION GAPLESS;

WITH '192.168.1.12', 35524

FROM sys.employees TO sys.employees,

FROM sys.departments TO sys.departments;;

CREATE success.

• Enable the gapless option.

iSQL> ALTER REPLICATION rep1 SET GAPLESS ENABLE;

Alter success.

3.6.4 Parallel Receiver Applier Option

3.6.4.1 Syntax

CREATE REPLICATION replication_name OPTIONS PARALLEL receiver_applier_count...;

ALTER REPLICATION replication_name SET PARALLEL receiver_applier_count;

3.6.4.2 Description

The parallel applier creates several appliers that are to apply XLogs to the Storage Manager. The

parallel receiver applier option enhances replication performance.

XLogs that the sender sends to the receiver are distributed to the applier in the unit of transactions,

so that the XLogs can be applied in parallel. DML statements are executed in parallel and this

enhances replication performance.

Parallel execution requires the synchronization of transaction commits among the parallel appliers

to ensure data consistency. During this synchronization process, all threads other than the appli-

ers that are committing transactions wait; the user can anticipate more performance enhancement

with a shorter synchronization process. Likewise, the user can anticipate performance degrada-

66 Replication Manual

tion if the number of concurrently running transactions is smaller than the number of appliers,

because appliers can only execute DML statements under concurrently running transactions, and

this would incur unnecessary applier management.

The parallel receiver applier option is suitable for replications with long-running transactions. Rep-

lications with short-running transactions encounter frequent synchronization processes for trans-

action commits; specifying this option would naturally degrade performance.

receiver_applier_count indicates the number of parallel appliers and can take a value between

0~512. If this value is set to 0, there will be no parallel appliers; in this case, receivers will do the

appliers’ job.

Receivers and appliers use queues to pass XLogs. The REPLICA-

TION_RECEIVER_APPLIER_QUEUE_SIZE property determines the maximum number of XLogs

that can be sent. If no value is entered, the value is set according to the following property.

The buffer_size property specifies the initial size of the queue. Values range from 0 to 1 TB. If this

value is not specified or if the number of parallel applier queues is less than the property REPLI-

CATION_RECEIVER_APPLIER_QUEUE_SIZE value, the number of parallel applier queues is set

to the value specified in the property REPLICATION_RECEIVER_APPLIER_QUEUE_SIZE.

If the unit (K, M, G) is not input, it is recognized in units of Megabytes.

For further information about properties, please refer to the General Reference.

3.6.4.3 Restrictions

• The parallel receiver applier option can only be specified when replication is being performed

in LAZY mode.

3.6.4.4 Example

iSQL> CREATE REPLICATION replication_name OPTIONS PARALLEL receiver_applier_count 100M...;

iSQL> ALTER REPLICATION replication_name SET PARALLEL receiver_applier_count 100;

3.6.5 Replication Transaction Grouping Option

3.6.5.1 Syntax

CREATE REPLICATION replication_name OPTIONS GROUPING...;

ALTER REPLICATION replication_name SET GROUPING [ENABLE|DISABLE];

Deploying Replication 67

3.6.5.2 Description

The replication transaction grouping option accumulates multiple transactions into single groups to

reduce the number of transactions to be replayed.

If the replication transaction grouping option has been specified and a replication gap occurs, the

Ahead Analyzer which analyzes logs (before the sender does) and creates replication transaction

groups, is created. The Ahead Analyzer analyzes as many XLogs as the value set for the REP-

LICATION_GROUPING_AHEAD_READ_NEXT_LOG_FILE property and starts with the file of the

second largest number to the log file being analyzed by the sender. The REPLICA-

TION_GROUPING_TRANSACTION_MAX_COUNT property determines the maximum number of

transactions that can be accumulated into single replication transaction groups.

Replication transactions are accumulated into two types of groups: commited transactions and

rolled back transactions. The sender converts groups of committed transactions into a single

transaction, whereas the sender does not send the XLogs for rolled-back transactions.

For further information about properties, please refer to the General Reference.

3.6.5.3 Restrictions

• The replication transaction grouping option can only be specified when replication is being

performed in LAZY mode.

68 Replication Manual

3.7 Replication in a Multiple IP Network Environment

Replication is supported in a multiple IP network environment. In other words, it is possible to

perform replication between two hosts having two or more physical network connections

therebetween.

3.7.1 Syntax

CREATE REPLICATION replication_name AS {MASTER|SLAVE}

 WITH ‘remotehostip‘, remoteportno ‘remotehostip‘, remoteportno …

 FROM user.localtableA TO user.remotetableA,

 FROM user.localtableB TO user.remotetableB,

 …

 FROM user.localtableC TO user.remotetableC;

ALTER REPLICATION replication_name

 ADD HOST ‘remotehostip‘, remoteportno;

ALTER REPLICATION replication_name

 DROP HOST ‘remotehostip‘, remoteportno;

ALTER REPLICATION replication_name

 SET HOST ‘remotehostip‘, remoteportno;

3.7.2 Description

In order to ensure high system performance and quickly overcome faults, systems can have mul-

tiple physical IP addresses assigned to them when a replication object is created. In such an en-

vironment, the Sender thread uses the first IP address to access peers and perform replication

tasks when replication starts, but if a problem occurs while this task is underway, the Sender

thread stops using this connection, connects using another IP address, and tries again.

• CREATE REPLICATION

The name of the replication object is first specified, and then in the WITH clause, the IP ad-

dresses and reception ports of multiple remote servers are specified, with commas between

each IP address and port, and with spaces between address/port pairs defining each host.

The owner and name of the target table(s) on the local server are specified in the FROM

clause and the owner and name of the corresponding target table(s) on the remote server

are specified in the TO clause, with commas between multiple table specifications.

• ALTER REPLICATION (ADD HOST)

This adds a host. A host can be added to a replication object after the replication object has

been stopped. When ADD HOST is executed, before the Sender thread actually adds the

host, the connection must be re-established using the IP address that was previously being

used.

• ALTER REPLICATION (DROP HOST)

Deploying Replication 69

This drops a host. A host can be dropped from a replication object after the replication object

has been stopped. When DROP HOST is executed, the Sender thread attempts to recon-

nect using the very first IP address.

• ALTER REPLICATION (SET HOST)

This means setting a particular host as the current host. The current host can be specified

after the replication object has been stopped. After execution, the Sender thread attempts to

connect using the currently designated IP address.

3.7.3 Examples

In the following double-IP network environment, a replication object having a table called em-

ployees and one called departments as its target objects is created, and then replication in Ac-

tive-Standby mode is executed on the local server (IP: 192.168.1.51, PORT NO: 30570) and the

remote server (‘IP: 192.168.1.154, PORT NO: 30570’, ‘IP: 192.168.2.154, PORT NO: 30570’).

• On the remote (standby) server:

iSQL> CREATE REPLICATION rep1

WITH '192.168.1.51',30570

FROM sys.employees TO sys.employees,

FROM sys.departments TO sys.departments;

Create success. <- The replication object is created on the remote server.

• On the local (active) server:

iSQL> CREATE REPLICATION rep1

WITH '192.168.1.154',30570 '192.168.2.154',30570

FROM sys.employees TO sys.employees,

FROM sys.departments TO sys.departments;

Create success.<- The replication object is created on the local server.

iSQL> SELECT * FROM system_.sys_replications_; <- The meta table enables the user to view the num-

ber of registered hosts, the number of replication target tables, and other related information.

REPLICATION_NAME LAST_USED_HOST_NO HOST_COUNT

--

IS_STARTED XSN ITEM_COUNT CONFLICT_RESOLUTION REPL_MODE

--

ROLE OPTIONS INVALID_RECOVERY REMOTE_FAULT_DETECT_TIME

REP1 2 2

0 -1 2 0 0

0 0 0

1 row selected.

iSQL> SELECT * FROM system_.sys_repl_hosts_; <- The meta table enables the user to view the remote

server-related information.

HOST_NO REPLICATION_NAME

HOST_IP PORT_NO

--

70 Replication Manual

2 REP1

192.168.1.154 30570

3 REP1

192.168.2.154 30570

2 rows selected.

iSQL> ALTER REPLICATION rep1 START; <- Replication starts

Alter success.

iSQL> SELECT rep_name, status, net_error_flag, sender_ip, sender_port,

 peer_ip, peer_port

FROM V$REPSENDER;

REP_NAME STATUS

--

NET_ERROR_FLAG

SENDER_IP SENDER_PORT

--PEER_IP

PEER_PORT

--REP1

1

0

192.168.1.51 13718

192.168.1.154 30570

1 row selected. <- The status of replication is checked after replication starts. The Sender thread con-

nects to the peer using the first IP and PORT.

!!!!!!!!!!!!! Network line disconnection !!!!!!!!!!!!!!!

iSQL> SELECT rep_name, status, net_error_flag, sender_ip, sender_port,

 peer_ip, peer_port

FROM V$REPSENDER;

REP_NAME STATUS

--

NET_ERROR_FLAG

SENDER_IP SENDER_PORT

PEER_IP PEER_PORT

REP1 1

0

192.168.1.51 40009

192.168.2.154 30570

1 row selected. <- The status of replication is checked after network failure occurs. This verifies recon-

nection using the second IP and PORT.

Deploying Replication 71

iSQL> ALTER REPLICATION rep1 STOP;

Alter success.<- Replication is stopped

iSQL> ALTER REPLICATION rep1 START;

Alter success.<- Replication starts

iSQL> SELECT rep_name, status, net_error_flag, sender_ip, sender_port,

 peer_ip, peer_port

FROM V$REPSENDER;

REP_NAME STATUS

--

NET_ERROR_FLAG

SENDER_IP SENDER_PORT

PEER_IP PEER_PORT

REP1 1

0

192.168.1.51 64351

192.168.2.154 30570

1 row selected. <- When replication is started again after having been stopped, it can be verified to have

been reconnected to the same IP and PORT to which it was connected before being stopped.

iSQL> ALTER REPLICATION rep1 STOP;

Alter success.<- Replication is stopped

iSQL> ALTER REPLICATION rep1 ADD HOST '192.168.3.154',30570;

Alter success.<- Add host: Can be executed after replication.

iSQL> ALTER REPLICATION rep1 DROP HOST '192.168.3.154',30570;

Alter success. <- remove host: Can be executed after replication.

iSQL> ALTER REPLICATION rep1 SET HOST '192.168.1.154',30570;

Alter success.<- Designate the host: Can be executed after replication.

iSQL> ALTER REPLICATION rep1 START;

Alter success.<- Replication is restarted after setting the new host. The replication operation first at-

tempts to connect using the currently designated IP and PORT.

iSQL> SELECT rep_name, status, net_error_flag, sender_ip, sender_port,

 peer_ip, peer_port

FROM V$REPSENDER;

REP_NAME STATUS

--

72 Replication Manual

NET_ERROR_FLAG

SENDER_IP SENDER_PORT

PEER_IP PEER_PORT

REP1 1

0

192.168.1.51 11477

192.168.1.154 30570

1 row selected. <- Connection to the peer using the newly designated IP 192.168.1.154 and PORT

number 30570 can be confirmed.

• The following messages are written to altibase_rp.log during execution of the

above-mentioned example.

• By enabling the HeartBeat Trace log, it is possible to check whether the HeartBeat Thread

was active.

iSQL> ALTER SYSTEM SET RP_MSGLOG_FLAG = 7; <- Default value is 6

• The following message is written to the log file after a replication object is created. Whether

the corresponding host has failed is checked at intervals corresponding to REPLICA-

TION_HBT_DETECT_TIME, which in this case has been set to 3 seconds.

[2010/10/28 15:49:44] [Thread-1649092928] [Level-1]

[HBT] == Network Fault Detection Proceeding ==

[2010/10/28 15:49:47] [Thread-1649092928] [Level-1]

[HBT] == Network Fault Detection Proceeding ==

[2010/10/28 15:49:50] [Thread-1649092928] [Level-1]

[HBT] == Network Fault Detection Proceeding ==

• The following message can be seen when replication starts. Connection to the peer using

the first IP and PORT can be verified.

[2010/10/28 15:50:44] [Thread-1649092928] [Level-1]

[HBT] == Network Fault Detection Proceeding ==

[2010/10/28 15:50:44] [Thread-1649092928] [Level-1]

[HBT] Host status info.

 [192.168.1.34:21300] Ref=1 Mode=0 mFault=No Fault

[2010/10/28 15:50:47] [Thread-1649092928] [Level-1]

[HBT] == Network Fault Detection Proceeding ==

[2010/10/28 15:50:47] [Thread-1649092928] [Level-1]

[HBT] Host status info.

 [192.168.1.34:21300] Ref=1 Mode=0 mFault=No Fault

[2010/10/28 15:50:50] [Thread-1649092928] [Level-1]

Deploying Replication 73

[HBT] == Network Fault Detection Proceeding ==

[2010/10/28 15:50:50] [Thread-1649092928] [Level-1]

[HBT] Host status info.

 [192.168.1.34:21300] Ref=1 Mode=0 mFault=No Fault

• If the REPLICATION_HBT_DETECT_HIGHWATER_MARK, which is one of the Altibase

properties, is set to 10 after the network line has been disconnected, the WaterMark value

can be confirmed to have been changed from 1 to 10. Thus, the HeartBeat thread would

determine that failure has occurred after not having received a response after 10 attempts,

and an attempt would be made to connect to the next host using the next IP and port num-

ber.

[2010/10/28 16:02:36] [Thread-1638603072] [Level-0]

[Sender] getNextLastUsedHostNo: from 192.168.1.34:21300 to 192.168.1.35:21300

...

[2010/10/28 16:04:17] [Thread-1649092928] [Level-1]

[HBT] == Network Fault Detection Proceeding ==

[2010/10/28 16:04:17] [Thread-1649092928] [Level-1]

[HBT] Host status info.

 [192.168.1.34:21300] Ref=1 Mode=0 mFault=No Fault

• The following message will be output when replication stops:

[2010/10/28 15:58:59] [Thread-1649092928] [Level-1]

[HBT] == Network Fault Detection Proceeding ==

[2010/10/28 15:59:02] [Thread-1649092928] [Level-1]

[HBT] == Network Fault Detection Proceeding ==

[2010/10/28 15:59:05] [Thread-1649092928] [Level-1]

[HBT] == Network Fault Detection Proceeding ==

74 Replication Manual

3.8 Properties

To use replication, the Altibase properties file should be modified to suit the purposes of the user.

The following properties are described in the Altibase Starting User’s Manual.

• REPLICATION_ACK_XLOG_COUNT

• REPLICATION_BEFORE_IMAGE_LOG_ENABLE

• REPLICATION_COMMIT_WRITE_WAIT_MODE

• REPLICATION_CONNECT_RECEIVE_TIMEOUT

• REPLICATION_CONNECT_TIMEOUT

• REPLICATION_DDL_ENABLE

• REPLICATION_EAGER_PARALLEL_FACTOR

• REPLICATION_EAGER_RECEIVER_MAX_ERROR_COUNT

• REPLICATION_FAILBACK_INCREMENTAL_SYNC

• REPLICATION_GAPLESS_ALLOW_TIME

• REPLICATION_GAPLESS_MAX_WAIT_TIME

• REPLICATION_GROUPING_TRANSACTION_MAX_COUNT

• REPLICATION_GROUPING_AHEAD_READ_NEXT_LOG_FILE

• REPLICATION_HBT_DETECT_HIGHWATER_MARK

• REPLICATION_HBT_DETECT_TIME

• REPLICATION_INSERT_REPLACE

• REPLICATION_KEEP_ALIVE_CNT

• REPLICATION_LOCK_TIMEOUT

• REPLICATION_LOG_BUFFER_SIZE

• REPLICATION_MAX_COUNT

• REPLICATION_MAX_LISTEN

Deploying Replication 75

• REPLICATION_MAX_LOGFILE

• REPLICATION_POOL_ELEMENT_COUNT

• REPLICATION_POOL_ELEMENT_SIZE

• REPLICATION_PORT_NO

• REPLICATION_PREFETCH_LOGFILE_COUNT

• REPLICATION_RECEIVE_TIMEOUT

• REPLICATION_RECEIVER_APPLIER_ASSIGN_MODE

• REPLICATION_RECEIVER_APPLIER_QUEUE_SIZE

• REPLICATION_RECOVERY_MAX_LOGFILE

• REPLICATION_RECOVERY_MAX_TIME

• REPLICATION_SENDER_AUTO_START

• REPLICATION_SENDER_COMPRESS_XLOG

• REPLICATION_SENDER_SLEEP_TIME

• REPLICATION_SENDER_SLEEP_TIMEOUT

• REPLICATION_SENDER_START_AFTER_GIVING_UP

• REPLICATION_SERVER_FAILBACK_MAX_TIME

• REPLICATION_SYNC_LOCK_TIMEOUT

• REPLICATION_SYNC_LOG

• REPLICATION_SYNC_TUPLE_COUNT

• REPLICATION_TIMESTAMP_RESOLUTION

• REPLICATION_TRANSACTION_POOL_SIZE

• REPLICATION_UPDATE_REPLACE

Fail-Over 77

4. Fail-Over
The Fail-Over feature is provided so that a fault that occurs while a database is providing service

can be overcome and service can continue to be provided as though no fault had occurred. This

chapter explains the Fail-Over feature that is provided with Altibase, and how to use it.

• Fail-Over Overview

• Using Fail-Over

• JDBC

• SQL CLI

• Embedded SQL

78 Replication Manual

4.1 Fail-Over Overview

4.1.1 Concept

“Fail-Over” refers to the ability to overcome a fault that occurs while a database is providing ser-

vice, so that service can continue to be provided as though no fault had occurred.

The kinds of faults that can occur include the case in which the DBMS server hardware itself de-

velops a fault, the case in which the server’s network connection is interrupted, and the case in

which a software error causes the DBMS to shut down abnormally. When any of the above kinds

of fault occurs, Fail-Over makes it possible to connect to another server, so that service can be

provided without interruption, and so that client applications are never aware that a fault has oc-

curred.

There are two kinds of Fail-Over, distinguished from each other according to the time point at

which the existence of a fault becomes known:

• CTF (Connection Time Fail-Over)

• STF (Service Time Fail-Over)

CTF refers to the case where the fault is noted at the time of connection to the DBMS, and con-

nection is made to a DBMS on another available node rather than to the DBMS suffering from the

fault, so that service can continue to be provided.

In the case of STF, in contrast, because a fault occurs while service is being provided after suc-

cessful connection to the DBMS, reconnection is made to a DBMS on another available node, and

session properties are restored, so that the business logic of the user’s application can continue to

be used. Therefore, tasks currently being executed on the DBMS in which the fault occurred may

need to be executed again.

With this kind of Fail-Over, in order to have confidence in the results of a task, the databases on

the DBMS in which the fault occurred and the DBMS that is available to provide service must be

guaranteed to be in exactly the same state and to contain exactly the same data.

In order to guarantee that the databases match, Altibase copies the database using Off-Line

Replication. In Off-Line Replication, the Standby Server reads the logs from the Active Server so

that it can harmonize its database with that on the Active Server.

Because one of the characteristics of replication is that the databases might not be in exactly the

same state, we recommend that the Fail-Over Callback function be used to confirm that the da-

tabases match.

Fail-Over 79

Fail-Over settings of Altibase include a Fail-Over property, which is set to TRUE to specify that

Fail-Over is to be executed. Additionally, the Fail-Over Callback function can be used to check

whether the databases match before Fail-Over is executed.

The three kinds of Fail-Over-related tasks that must be executed by the client application are

summarized as follows:

• The Fail-Over connection property must be set to TRUE

• The Fail-Over Callback function must be registered

• Additional tasks may be necessary depending on the result of callback

4.1.2 Process

The Fail-Over registration and handling process is as shown in the following figure.

Figure 4-1 Fail-Over Registration and Handling Process

Fail-Over Callback must be registered by the user, and, once registered, during the Fail-Over

process the Altibase User Library (for example, the JDBC and CLI libraries) communicates with

client applications, as shown in the picture above.

If Fail-Over Callback is not registered, Fail-Over takes place without communication with the client

application, and a trace log of the steps shown above is kept. In a replicated Altibase database

environment, the use of callback is strongly recommended, so that Fail-Over Validation can be

80 Replication Manual

conducted.

Figure 4-2 Fail-Over Process

1. After connecting to the database, the user registers Fail-Over Callback in the connection at-

tributes.

2. The business logic is conducted in the client application. While the client application is run-

ning, if it receives an error message about a fault occurring in the DBMS hardware (including

a network error), it calls the Altibase User Library so that Fail-Over can be conducted.

3. This client library sends a Fail-Over Start Event (FO_BEGIN) to the registered Fail-Over

Callback. Fail-Over Callback returns information about whether Fail-Over will continue to

progress.

4. If Fail-Over Callback determines that the Fail-Over process should continue (FO_GO), exe-

cuted SQL statements are closed, an available server is located, and the Altibase User Li-

brary connects and logs in to that database. Additionally, the properties of the previous ses-

sion (autocommit mode, optimization settings, XA connection settings, etc.) are restored on

the new server.

5. When step number 4 is complete, Fail-Over Callback sends an event indicating that the

Fail-Over process has been completed successfully (FO_END).

6. Fail-Over Callback executes a query to ensure that the databases match (Fail-Over Valida-

tion). In a replicated database environment, it is essential to ensure that the databases

match.

Connect to DB A

Register a failover
callback

Disconnect

Use Close statement

Connect to DB B

Restore session
property

Application ALTIBASE User Library

Case FO_ BEGIN:

Case FO_ END:

Check sync
between DBs

callback

Connection
Failure

FO_ BEGIN

FO_ GO

FO_ END

FO_SUCCESS

FO_ GO

Retry

Fail-Over 81

4.2 Using Fail-Over

4.2.1 Registering Connection Properties

Once the Fail-Over connection properties have been registered, when a fault occurs, Altibase

detects this and internally conducts the Fail-Over tasks according to the expressly specified con-

nection properties.

The properties can be specified in the following two ways:

• by specifying the Connection String when calling the API’s connection function

• by specifying connection properties in the appropriate Altibase settings file (altibase_cli.ini)

4.2.1.1 Specifying the Connection String in a Client Application

When the connection function is executed in the client application, the following connection strings

can be specified:

• JDBC

Jdbc:Altibase://192.168.3.51:20300/mydb?AlternateServers=(192.168.3.54:20300,192.168.3.53:20300

)&ConnectionRetryCount=3&ConnectionRetryDelay=3&SessionFailOver=on;

• ODBC, Embedded SQL

DSN=192.168.3.51;UID=altibase;PWD=altibase;PORT_NO=20300;AlternateServers=(192.168.3.54:20

300,192.168.3.53:20300);ConnectionRetryCount=3;ConnectionRetryDelay=5;SessionFailOver=on;

AlternateServer indicates servers to which connection can be made in the event of a fault, and is ex-

pressed in the form (IP Address1:Port1, IP Address2:Port2,...).

ConnectionRetryCount indicates the number of times to repeatedly attempt to connect to an available

server in the event of a connection failure.

ConnectionRetryDelay indicates the amount of time to wait between connection attempts in the event of

a connection failure.

SessionFailOver indicates whether STF (Service Time Fail-Over) is to be conducted.

4.2.1.2 Specifying the Connection Properties in the Settings File

The Fail-Over connection settings can be specified in the Data Source portion of the

altibase_cli.ini file, which is located in the $ALTIBASE_HOME/conf directory, the $HOME directory,

or the current directory of the relevant client application, and the DataSource name is specified in

the Connection String of the connection function.

82 Replication Manual

[MyDataSource1]

Server=192.168.3.51

Port=20300

User=altibase

Password=altibase

DataBase = mydb

AlternateServers=(192.168.3.54:20300,192.168.3.53:20300)

ConnectionRetryCount=3

ConnectionRetryDelay=5

SessionFailOver = off

The Connection String of the client application’s connection function appears as shown below,

depending on the connection interface used by the client application.

• JDBC

The data source name is specified as part of the Connection URL as follows:

Jdbc:Altibase://MyDataSource1//

• ODBC, Embedded SQL

The data source name is specified in the DSN properties as follows:

DSN=MyDataSource

Settings are made in the odbc.ini file in the same way that they are made in the altibase_cli.ini file.

4.2.2 Checking Whether Fail-Over Succeeded

Whether CTF (Connection Time Fail-Over) was successful can be quickly and easily determined

merely by checking whether it is possible to connect to the database. In contrast, determining

whether STF (Service Time Fail-Over) was successful involves checking for exceptions and er-

rors.

For example, when using JDBC, a SQLException is caught, and the SQLException’s

getSQLState() method is used to check the value of SQLStates.status. If this value is ES_08FO01,

Fail-Over is determined to have been successful.

When using a CLI or ODBC, if the result of SQLPrepare, SQLExecute, SQLFetch or the like is an

error, rather than SQL_SUCCESS, a statement handle is handed over to the SQLGetDiagRec

function, and if the native error code that is returned in the 5th argument of this function has a

diagnostic record equal to ALTIBASE_FAILOVER_SUCCESS, STF (Service Time Fail-Over) can

be determined to have succeeded.

When using Embedded SQL, after executing the EXEC SQL command, if sqlca.sqlcode is not

SQL_SUCCESS but ALTIBASE_FAILOVER_SUCCESS, this means that STF (Service Time

Fail-Over 83

Fail-Over) was successful.

The actual method of determining whether Fail-Over has succeeded varies according to the type

of client application, as will be explained below.

4.2.3 Writing Fail-Over Callback Functions

It is necessary to write a callback function to determine whether databases match when Fail-Over

is executed. The method of writing Fail-Over Callback functions varies depending on the type of

client application, but the basic structure is the same, and is as follows:

• define data structures related to Fail-Over

• write Fail-Over Callback function bodies for handling Fail-Over-related events

• write code to determine whether Fail-Over was successful

Either Fail-Over events are defined in the data structure definition, or else a defined interface

(header file) is included in the data structure definition.

Various tasks must be conducted in response to Fail-Over-related events such as the start or

completion of Fail-Over. Code for performing these tasks, including for example the task of

checking whether the contents of databases match, is located in the callback function body.

Determining that Fail-Over has succeeded consists of the successful completion of Fail-Over and

the successful execution of a Fail-Over callback function, and means that service that was sus-

pended due to a fault can continue to be provided.

The actual method of writing callback functions is described below for various client application

environments.

84 Replication Manual

4.3 JDBC

4.3.1 Fail-Over Callback Interface

public interface ABFailOverCallback

{

int FO_BEGIN = 0;

int FO_END = 1;

int FO_ABORT = 2;

int FO_GO = 3;

int FO_QUIT = 4;

int failOverCallback(Connection aConnection,

 Object aAppContext,

 int aFailOverEvent);

};

The meaning of the values is as follows:

FO_BEGIN

FailOverCallback is notified of the start of STF (Service Time FailOver).

FO_END

FailOverCallback is notified of the success of STF.

FO_ABORT

FailOverCallback is notified of the failure of STF.

FO_GO

FailOverCallback sends this to JDBC so that STF can advance to the next step.

FO_QUIT

This is used to notify JDBC of the failure of FailOverCallback.

aAppContext

This includes information about any objects that the user intends to save. If there are no objects to

be saved, this is set to NULL.

Fail-Over 85

4.3.2 Writing Fail-Over Callback Functions

The MyFailOverCallback class, which implements the ABFailOverCallback Interface, must be

written.

The tasks to be conducted in response to the FO_BEGIN and FO_END events, which are defined

in the callback interface, must be handled by this class. That is to say, the required tasks for each

of the Fail-Over events are described here.

For example, when the FO_BEGIN event occurs, code for handling tasks that are required before

Fail-Over starts is provided, and when the FO_END event occurs, code for handling tasks that are

required after Fail-Over ends and before service resumes is provided. One concrete example is

the code that is used to check whether the data are consistent between available databases when

the FO_END event occurs.

public class MyFailOverCallback implements ABFailOverCallback

{

 public int failOverCallback(Connection aConnection,

 Object aAppContext,

 int aFailOverEvent)

 {

 Statement sStmt = null;

 ResultSet sRes = null;

 switch (aFailOverEvent)

 {

 case ABFailOverCallback.FO_BEGIN:

 System.out.println(“FailOver Started “);

 break;

 case ABFailOverCallback.FO_END:

 try

 {

 sStmt = aConnection.createStatement();

 }

 catch(SQLException ex1)

 {

 try

 {

 sStmt.close();

 }

 catch(SQLException ex3)

 {

 }

 return ABFailOverCallback.FO_QUIT;

86 Replication Manual

 } //catch SQLException ex1

 try

 {

 sRes = sStmt.executeQuery("select 1 from dual");

 while(sRes.next())

 {

 if(sRes.getInt(1) == 1)

 {

 break;

 }

 }//while;

 }

 catch (SQLException ex2)

 {

 try

 {

 sStmt.close();

 }

 catch(SQLException ex3)

 {

 }

 return ABFailOverCallback.FO_QUIT;

 }//catch

 break;

 }//switch

 return ABFailOverCallback.FO_GO;

 }

}

Furthermore, the MyFailOverCallback class defined above is used to create a callback object.

MyFailOverCallback sMyFailOverCallback = new MyFailOverCallback();

Properties sProp = new Properties();

String sURL =

"jdbc:Altibase://192.168.3.51:20300+"/mydb?connectionRetryCount=3&

connectionRetryDelay=10&sessionFailOver=on";

The created callback object is registered with the connection object.

((ABConnection)sCon).registerFailOverCallback(sMyFailOverCallback,null);

4.3.3 Checking Whether Fail-Over Succeeded

Checking whether Fail-Over, particularly STF (Service Time Fail-Over), was successful is con-

Fail-Over 87

ducted using SQLException. An SQLException is caught, and the SQLException’s getSQLState()

method is used to check the value of SQLStates.status. If this value is ES_08FO01, Fail-Over is

determined to have been successful.

The following example demonstrates how to check whether Fail-Over was successful.

while(true)

{

 try

 {

 sRes = sStmt.executeQuery("SELECT C1 FROM T1");

 while(sRes.next())

 {

 System.out.println("VALUE : " + sRes.getString(1));

 }//while

 break;

 }

 catch (SQLException e)

 {

 if(e.getSQLState().equals(SQLStates.status[SQLStates.ES_08FO01]) == true)

 {

 continue;

 }

 System.out.println("EXCEPTION : " + e.getMessage());

 break;

 }

}

4.3.4 Sending Fail-Over Connection Settings to WAS

The Fail-Over property settings are added to the URL portion as follows:

"jdbc:Altibase://192.168.3.51:20300+"/mydb?connectionRetryCount=3&connectionRetryDelay=10&ses

sionFailOver=on";

4.3.5 Example

When the callback functions defined above are used, client applications are authored as seen

below.

Please refer to the following example, which is included with the Altibase package and should

have been installed in $ALTIBASE_HOME/sample/JDBC/Fail-Over/FailOverCallbackSample.java.

When Fail-Over is completed, whether Fail-Over was successful is checked using SQLStates. The

value of the element at index SQLStates.ES_08FO01 in the SQLStates.status array indicates that

88 Replication Manual

Fail-Over was successful, and that the client application can resume its tasks and service can be

provided again.

class FailOverCallbackSample

{

 public static void main(String args[]) throws Exception

 {

 //---

 // Initialization

 //---

 // AlternateServers is the available node property.

 String sURL = "jdbc:Altibase://127.0.0.1:" +

args[0]+"/mydb?AlternateServers=(128.1.3.53:20300,128.1.3.52:20301)&

ConnectionRetryCount=100&ConnectionRetryDelay=100&SessionFailOver=on";

 try

 {

 Class.forName("Altibase.jdbc.driver.AltibaseDriver");

 }

 catch (Exception e)

 {

 System.err.println("Can't register Altibase Driver\n");

 return;

 }

 //---

 // Test Body

 //---

 //-----------------------

 // Preparation

 //-----------------------

 Properties sProp = new Properties();

 Connection sCon;

 PreparedStatement sStmt = null;

 ResultSet sRes = null ;

 sProp.put("user", "SYS");

 sProp.put("password", "MANAGER");

 MyFailOverCallback sMyFailOverCallback = new MyFailOverCallback();

 sCon = DriverManager.getConnection(sURL, sProp);

 //FailOverCallback is registered.

 ((ABConnection)sCon).registerFailOverCallback(sMyFailOverCallback, null);

 // Programs must be written in the following form in order to support Session Fail-Over.

 /*

 while (true)

Fail-Over 89

 {

 try

 {

 }

 catch(SQLException e)

 {

 //Fail-Over occurs.

 if(e.getSQLState().equals(SQLStates.status[SQLStates.ES_08FO01]) == true)

 {

 continue;

 }

 System.out.println("EXCEPTION : " + e.getMessage());

 break;

 }

 break;

 } // while

 */

 while(true)

 {

 try

 {

 sStmt = sCon.prepareStatement("SELECT C1 FROM T2 ORDER BY C1");

 sRes = sStmt.executeQuery();

 while(sRes.next())

 {

 System.out.println("VALUE : " + sRes.getString(1));

 }//while

 }

 catch (SQLException e)

 {

 //FailOver occurs.

 if(e.getSQLState().equals(SQLStates.status[SQLStates.ES_08FO01]) == true)

 {

 continue;

 }

 System.out.println("EXCEPTION : " + e.getMessage());

 break;

 }

 break;

 }

 sRes.close();

90 Replication Manual

 //---

 // Finalize

 //---

 sStmt.close();

 sCon.close();

 }

}

Fail-Over 91

4.4 SQL CLI

In this section, the structure of sqlcli.h and the Fail-Over related constants that are declared

therein will be examined, and how to register Fail-Over Callback will be explained with reference

to an example.

4.4.1 Related Data Structures

The prototype of the Fail-Over callback function, used for communication between the client ap-

plication and the CLI library during STF (Service Time Fail-Over), is shown below.

typedef SQLUINTEGER SQL_API (*SQLFailOverCallbackFunc)

 (SQLHDBC aDBC,

 void *aAppContext,

 SQLUINTEGER aFailOverEvent);

aDBC is the SQLHDBC created by the client application using SQLAllocHandle.

aAppContext is a pointer, sent to the CLI library at the time of registration of

FailOverCallbackContext, pointing to an object that the user wishes to save. When Fail-Over

callback is called at the time of STF (Service Time FailOver), it is sent again to Fail-Over callback.

aFailOverEvent can be set to the following values, which have the meanings described below.

ALTIBASE_FO_BEGIN: 0

Fail-Over callback is notified of the start of STF (Service Time FailOver).

ALTIBASE_FO_END: 1

Fail-Over callback is notified of the success of STF (Service Time FailOver).

ALTIBASE_FO_ABORT: 2

Fail-Over callback is notified of the failure of STF (Service Time FailOver).

ALTIBASE_FO_GO: 3

Fail-Over callback sends aFailOverEvent to the CLI library so that STF can advance to the next

step.

ALTIBASE_FO_QUIT: 4

Fail-Over callback sends aFailOverEvent to the CLI library to prevent STF from advancing to the

next step.

92 Replication Manual

The structure of SQLFailOverCallbackContext is as follows.

typedef struct SQLFailOverCallbackContext

{

 SQLHDBC mDBC;

 void *mAppContext;

 SQLFailOverCallbackFunc mFailOverCallbackFunc;

}SQLFailOverCallbackContext;

In the case of CLI, mDBC can be set to NULL.

mAppContext includes information about any objects that the user intends to save. If there are no

objects to be saved, this is set to NULL.

mFailOverCallbackFunc is the name of the user-defined FailOverCallback function.

4.4.2 Registering Fail-Over

As can be seen below, the process of Fail-Over registration involves the creation of a

FailOverCallbackContext object, and after connection to the database is successful,

FailOverCallbackContext is populated with values.

The following is an example of Fail-Over registration.

SQLFailOverCallbackContext sFailOverCallbackContext;

...... <<some code omitted here>>

 /* connect to server */

sRetCode = SQLDriverConnect(sDbc, NULL,

SQLCHAR*)"DSN=127.0.0.1;UID=unclee;PWD=unclee;PORT_NO=20300;

AlternateServers=(192.168.3.54:20300,192.168.3.53:20300);ConnectionRetryCount=3;

ConnectionRetryDelay=5;SessionFailOver=on;"),

SQL_NTS, NULL, 0, NULL, SQL_DRIVER_NOPROMPT);

sFailOverCallbackContext.mDBC = NULL;

sFailOverCallbackContext.mAppContext = NULL;

sFailOverCallbackContext.mFailOverCallbackFunc = myFailOverCallback;

sRetCode = SQLSetConnectAttr(sDbc,ALTIBASE_FAILOVER_CALLBACK,

 (SQLPOINTER)&sFailOverCallbackContext, 0);

The contents of myFailOverCallback are as follows.

SQLUINTEGER myFailOverCallback(SQLHDBC aDBC,

void *aAppContext,

SQLUINTEGER aFailOverEvent)

{

 SQLHSTMT sStmt = SQL_NULL_HSTMT;

 SQLRETURN sRetCode;

Fail-Over 93

 SQLINTEGER sVal;

 SQLLEN sLen;

 SQLUINTEGER sFailOverIntension = ALTIBASE_FO_GO;

 switch(aFailOverEvent)

 {

 case ALTIBASE_FO_BEGIN: // Fail-Over starts.

 break;

 case ALTIBASE_FO_END:

 sRetCode = SQLAllocStmt(aDBC,&sStmt);

 if(sRetCode != SQ_SUCCESS)

 {

 printf("FailOver-Callback SQLAllocStmt Error ");

 return ALTIBASE_FO_QUIT;

 }

 sRetCode = SQLBindCol(sStmt, 1, SQL_C_SLONG , &sVal,0,&sLen);

 if(sRetCode != SQ_SUCCESS)

 {

 printf("FailOver-Callback SQLBindCol");

 return ALTIBASE_FO_QUIT;

 }

 sRetCode = SQLExecDirect(sStmt, (SQLCHAR *) "SELECT 1 FROM DUAL",

 SQL_NTS);

 if(sRetCode != SQ_SUCCESS)

 {

 printf("FailOVer-Callback SQLExecDirect");

 return ALTIBASE_FO_QUIT;

 }

 while ((sRetCode = SQLFetch(sStmt)) != SQL_NO_DATA)

 {

 if(sRetCode != SQL_SUCCESS)

 {

 printf("FailOver-Callback SQLBindCol");

 sFailOverIntension = ALTIBASE_FO_QUIT;

 break;

 }

 printf("FailOverCallback->Fetch Value = %d \n",sVal);

 fflush(stdout);

 }

 sRetCode = SQLFreeStmt(sStmt, SQL_DROP);

 ATC_TEST(sRetCode,"SQLFreeStmt");

 break;

 default:

 break;

 }//switch

94 Replication Manual

 return sFailOverIntension;

 }//myFailOverCallback

4.4.3 Checking Whether Fail-Over Succeeded

If the result of SQLPrepare, SQLExecute, SQLFetch or the like is an error, rather than

SQL_SUCCESS, a statement handle is handed over to SQLGetDiagRec, and if aNativeError has

a diagnostic record equal to ALTIBASE_FAILOVER_SUCCESS, STF (Service Time Fail-Over)

can be determined to have succeeded.

The following example demonstrates how to check whether STF (Service Time Fail-Over) was

successful.

UInt isFailOverErrorEvent(SQLHSTMT aStmt)

{

 SQLRETURN rc;

 SQLSMALLINT sRecordNo;

 SQLCHAR sSQLSTATE[6];

 SQLCHAR sMessage[2048];

 SQLSMALLINT sMessageLength;

 SQLINTEGER sNativeError;

 UInt sRet = 0;

 sRecordNo = 1;

 while ((rc = SQLGetDiagRec(SQL_HANDLE_STMT,

 aStmt,

 sRecordNo,

 sSQLSTATE,

 &sNativeError,

 sMessage,

 sizeof(sMessage),

 &sMessageLength)) != SQL_NO_DATA)

 {

 sRecordNo++;

 if(sNativeError == ALTIBASE_FAILOVER_SUCCESS)

 {

 sRet = 1;

 break;

 }

 }

 return sRet;

}

The following example shows that when a network error occurs while SQLExecDirect is being

executed, whether STF (Service Time FailOver) was successful is checked, and it is re-executed if

Fail-Over 95

necessary (in a prepare/execute environment, re-execution would have to start at the prepare

stage).

retry:

 sRetCode = SQLExecDirect(sStmt,

(SQLCHAR *) "SELECT C1 FROM T2 WHERE C2 > ? ORDER BY C1",

SQL_NTS);

 if(sRetCode != SQL_SUCCESS)

 {

 if(isFailOverErrorEvent(sStmt) == 1)

 {

 goto retry;

 }

 else

 {

 printf("Error While DirectExeute....");

 exit(-1).

 }

 }

4.4.4 Example

4.4.4.1 Making Environment Settings

To implement the example, a data source called Test1 is described in altibase_cli.ini as follows.

[Test1]

Server=192.168.3.53

Port=20300

User=altibase

Password= altibase

DataBase = mydb

AlternateServers=(192.168.3.54:20300,192.168.3.53:20300)

ConnectionRetryCount=3

ConnectionRetryDelay=5

SessionFailOver = on

Additionally, the FailOverCallback function uses myFailOverCallback, which was described

above.

When STF (Service Time Fail-Over) takes place, if it is successful, execution must be repeated

starting with SQLPrepare (in the case of SQLDirectExecute, the prepare process is not necessary,

and only SQLDirectExecute need be re-executed).

If STF (Service Time Fail-Over) occurs while data are being fetched, it will be necessary to call

96 Replication Manual

SQLCloseCursor and start over again from the prepare process (in the case of SQLDirectExecute,

the prepare process is not necessary, and only SQLDirectExecute will need to be re-executed).

4.4.4.2 Sample Code

To view the complete contents of this example, please refer to

$ALTIBASE_HOME/sample/SQLCLI/Fail-Over/FailOverCallbackSample.cpp, which should have

been installed as part of the Altibase package.

#define ATC_TEST(rc, msg) if(((rc)&(~1))!=0) { printf(msg); exit(1); }

//determining whether STF(Service Time FailOver) was successful.

UInt isFailOverErrorEvent(SQLHDBC aDBC,SQLHSTMT aStmt)

{

 SQLRETURN rc;

 SQLSMALLINTsRecordNo;

 SQLCHAR sSQLSTATE[6];

 SQLCHAR sMessage[2048];

 SQLSMALLINTsMessageLength;

 SQLINTEGERsNativeError;

 UInt sRet = 0;

 sRecordNo = 1;

 while ((rc = SQLGetDiagRec(SQL_HANDLE_STMT, aStmt,

 sRecordNo, sSQLSTATE,

 &sNativeError, sMessage,

 sizeof(sMessage),

 &sMessageLength)) != SQL_NO_DATA)

 {

 sRecordNo++;

 if(sNativeError == ALTIBASE_FAILOVER_SUCCESS)

 {

 sRet = 1;

 break;

 }

 }

 return sRet;

}

int main(SInt argc, SChar *argv[])

{

 SCharsConnStr[BUFF_SIZE] = {0};

 SQLHANDLE sEnv = SQL_NULL_HENV;

 SQLHANDLE sDbc = SQL_NULL_HDBC;

 SQLHSTMT sStmt = SQL_NULL_HSTMT;

 SQLINTEGER sC2;

 SQLRETURN sRetCode;

Fail-Over 97

 SQLINTEGER sInd;

 SQLINTEGER sValue;

 SQLLEN sLen;

 UInt sDidCreate = 0;

 SChar sBuff[BUFF_SIZE2];

 SChar sQuery[BUFF_SIZE];

 SQLFailOverCallbackContext sFailOverCallbackContext;

 snprintf(sConnStr, sizeof(sConnStr), "DSN=Test1");

 sprintf(sQuery,"SELECT C1 FROM T2 WHERE C2 > ? ORDER BY C1");

 sRetCode = SQLAllocHandle(SQL_HANDLE_ENV, NULL, &sEnv);

 ATC_TEST(sRetCode,"ENV");

 sRetCode = SQLAllocHandle(SQL_HANDLE_DBC, sEnv, &sDbc);

 ATC_TEST(sRetCode,"DBC");

 /* connect to server */

 sRetCode = SQLDriverConnect(sDbc, NULL, (SQLCHAR *)sConnStr,

 SQL_NTS, NULL, 0, NULL,

 SQL_DRIVER_NOPROMPT);

 ATC_TEST(sRetCode,"SQLDriverConnect");

 sRetCode = SQLAllocStmt(sDbc,&sStmt);

 ATC_TEST(sRetCode,"SQLAllocStmt");

 sRetCode = SQLBindCol(sStmt, 1, SQL_C_CHAR , sBuff,BUFF_SIZE2,&sLen);

 ATC_TEST(sRetCode,"SQLBindCol");

 sRetCode = SQLBindParameter(sStmt, 1, SQL_PARAM_INPUT,

 SQL_C_SLONG, SQL_INTEGER,

 0, 0, &sC2, 0, NULL);

 ATC_TEST(sRetCode,"SQLBindParameter");

 sFailOverCallbackContext.mDBC = NULL;

 sFailOverCallbackContext.mAppContext = &sFailOverDirection;

 sFailOverCallbackContext.mFailOverCallbackFunc = myFailOverCallback;

 sRetCode = SQLSetConnectAttr(sDbc,ALTIBASE_FAILOVER_CALLBACK,

 (SQLPOINTER)&sFailOverCallbackContext,0);

 ATC_TEST(sRetCode,"SQLSetConnectAttr");

 retry:

 sRetCode = SQLPrepare(sStmt, (SQLCHAR *)sQuery, SQL_NTS);

 if(sRetCode != SQL_SUCCESS)

 {

 // If STF was successful, start over again from the prepare stage.

 if(isFailOverErrorEvent(sDbc,sStmt) == 1)

 {

 goto retry;

 }

 else

 {

 ATC_TEST(sRetCode,"SQLPrepare");

98 Replication Manual

 }

 }

 sC2 = 0;

 sRetCode = SQLExecute(sStmt);

 if(sRetCode != SQL_SUCCESS)

 {

 // If STF was successful, start over again from the prepare stage.

 if(isFailOverErrorEvent(sDbc,sStmt) == 1)

 {

 goto retry;

 }

 else

 {

 ATC_TEST(sRetCode,"SQLExecDirect");

 }

 }

 while ((sRetCode = SQLFetch(sStmt)) != SQL_NO_DATA)

 {

 if(sRetCode != SQL_SUCCESS)

 {

 if(isFailOverErrorEvent(sDbc,sStmt) == 1)

 {

 // If STF occurs during a fetch operation, it is absolutely essential to call SQLCloseCursor.

 SQLCloseCursor(sStmt);

 goto retry;

 }

 else

 {

 ATC_TEST(sRetCode,"SQLExecDirect");

 }

 }

 printf("Fetch Value = %s \n", sBuff);

 fflush(stdout);

 }

 sRetCode = SQLFreeStmt(sStmt, SQL_DROP);

 ATC_TEST(sRetCode,"SQLFreeStmt");

 sRetCode = SQLDisconnect(sDbc);

 ATC_TEST(sRetCode,"Disconnect()");

 sRetCode = SQLFreeHandle(SQL_HANDLE_DBC, sDbc);

 ATC_TEST(sRetCode,"Free HDBC");

 sRetCode = SQLFreeHandle(SQL_HANDLE_ENV, sEnv);

 ATC_TEST(sRetCode,"Free HENV");

}

Fail-Over 99

4.5 Embedded SQL

Because the Fail-Over data structures used here are the same as those used in CLI, and because

the structure of an ESQLC (Embedded SQL in C) application is similar to that of a CLI application,

only the features unique to ESQLC will be described here.

4.5.1 Registering Fail-Over Callback Functions

Because SQLHDBC of CLI cannot be directly checked in an Embedded SQL program, the pro-

cess of registering a Fail-Over callback function is as shown below.

Here, FailOverCallbackContext is declared in the declaration section.

EXEC SQL BEGIN DECLARE SECTION;

SQLFailOverCallbackContext sFailOverCallbackContext;

EXEC SQL END DECLARE SECTION;

FailOverCallbackContext is populated with values.

sFailOverCallbackContext.mDBC = NULL;

sFailOverCallbackContext.mAppContext = NULL;

sFailOverCallbackContext.mFailOverCallbackFunc = myFailOverCallback;

myFailOverCallback is the function that was seen in the CLI Fail-Over example above, only the

CLI function and Os function need to be written, and Embedded SQL commands cannot be used.

The following shows how a Fail-Over Callback function is registered in an Embedded SQL

statement.

EXEC SQL [AT CONNECTUON-NAME] REGISTER

FAIL_OVER_CALLBACK :sFailOverCallbackContext;

4.5.2 Checking Whether Fail-Over Succeeded

After the EXEC SQL command is executed, if the result of sqlca.sqlcode is

ALTIBASE_FAILOVER_SUCCESS, rather than SQL_SUCCESS, then STF (Service Time

Fail-Over) can be determined to have succeeded.

The following example demonstrates how to check whether STF (Service Time Fail-Over) was

successful.

re-execute:

 EXEC SQL INSERT INTO T1 VALUES(1);

 if (sqlca.sqlcode != SQL_SUCCESS)

100 Replication Manual

 {

 if (sqlca.sqlcode == ALTIBASE_FAILOVER_SUCCESS)

 {

 goto re-execute;

 }//if

 else

 {

 printf("SQLCODE : %d\n", SQLCODE);

 printf("sqlca.sqlerrm.sqlerrmc : %s\n", sqlca.sqlerrm.sqlerrmc);

 printf("%d rows inserted\n", sqlca.sqlerrd[2]);

 printf("%d times insert success\n\n", sqlca.sqlerrd[3]);

 }//else

 }

4.5.3 Example 1

main()

{

 EXEC SQL BEGIN DECLARE SECTION;

 SQLFailOverCallbackContext sFailOverCallbackContext;

 char sUser[10];

 char sPwd[10];

 char sConnOpt[1024];

 EXEC SQL END DECLARE SECTION;

 strcpy(sUser, "SYS");

 strcpy(sPwd, "MANAGER");

 sprintf(sConnOpt,"DSN=127.0.0.1;UID=altibase;PWD= altibase;PORT_NO=20300;

 AlternateServers=(192.168.3.54:20300,192.168.3.53:20300);ConnectionRetryCount=3;

 ConnectionRetryDelay=5;SessionFailOver=on;"");

 EXEC SQL CONNECT :sUser IDENTIFIED BY :sPwd USING : sConnOpt;

 if (sqlca.sqlcode != SQL_SUCCESS)

 {

 printf("SQLCODE : %d\n", SQLCODE);

 printf("sqlca.sqlerrm.sqlerrmc : %s\n", sqlca.sqlerrm.sqlerrmc);

 return 0;

 }

 else

 {

 printf("CONNECTION SUCCESS\n");

 }

 //FailOverCallbackContext is populated with values.

 sFailOverCallbackContext.mDBC = NULL;

 sFailOverCallbackContext.mAppContext = NULL;

 sFailOverCallbackContext.mFailOverCallbackFunc = myFailOverCallback;

Fail-Over 101

 // FailOverCallbackContext is registered.

 EXEC SQL REGISTER FAIL_OVER_CALLBACK :sFailOverCallbackContext;

re-execute:

 EXEC SQL INSERT INTO T1 VALUES(1);

 if (sqlca.sqlcode != SQL_SUCCESS)

 {

 if (SQLCODE == EMBEDED_ALTIBASE_FAILOVER_SUCCESS)

 {

 goto re-execute;

 }//if

 else

 {

 printf("SQLCODE : %d\n", SQLCODE);

 printf("sqlca.sqlerrm.sqlerrmc : %s\n", sqlca.sqlerrm.sqlerrmc);

 printf("%d rows inserted\n", sqlca.sqlerrd[2]);

 printf("%d times insert success\n\n", sqlca.sqlerrd[3]);

 return 0;

 }//else

 }

 EXEC SQL DISCONNECT;

}

4.5.4 Example 2

This example demonstrates the use of a cursor. If Fail-Over occurs while a cursor is being used,

EXEC SQL CLOSE RELEASE Cursor is executed, and the EXEC SQL DECLARE CURSOR

statement is executed again, so that a new prepare process can be executed on an available

server.

retry:

 EXEC SQL DECLARE CUR1 CURSOR FOR SELECT C1 FROM T2 ORDER BY C1;

 if (sqlca.sqlcode == SQL_SUCCESS)

 {

 printf("DECLARE CURSOR SUCCESS.!!! \n");

 }

 else

 {

 if(SQLCODE == EMBEDED_ALTIBASE_FAILOVER_SUCCESS)

 {

 printf("Fail-Over SUCCESS !!! \n");

 goto retry;

 }

 else

 {

102 Replication Manual

 printf("Error : [%d] %s\n\n", SQLCODE, sqlca.sqlerrm.sqlerrmc);

 return(-1);

 }

 }

 EXEC SQL OPEN CUR1;

 if (sqlca.sqlcode == SQL_SUCCESS)

 {

 printf("DECLARE CURSOR SUCCESS !!!\n");

 }

 else

 {

 if(SQLCODE == EMBEDED_ALTIBASE_FAILOVER_SUCCESS)

 {

 printf("Fail-Over SUCCESS !!! \n");

 /* If a cursor is OPEN when Fail-Over occurs, the cursor must be closed

 and released. */

 EXEC SQL CLOSE RELEASE CUR1;

 goto retry;

 }

 else

 {

 printf("Error : [%d] %s\n\n", SQLCODE, sqlca.sqlerrm.sqlerrmc);

 return(-1);

 }

 } //else

 while(1)

 {

 EXEC SQL FETCH CUR1 INTO :sC1;

 if (sqlca.sqlcode == SQL_SUCCESS)

 {

 printf("Fetch Value = %s \n",sC1);

 }

 else if (sqlca.sqlcode == SQL_NO_DATA)

 {

 break;

 }

 else

 {

 if(SQLCODE == EMBEDED_ALTIBASE_FAILOVER_SUCCESS)

 {

 printf("DECLARE CURSOR SUCCESS !!!");

 /* If a fetch operation is underway when Fail-Over occurs, the

 cursor must be closed and released. */

 EXEC SQL CLOSE RELEASE CUR1;

Fail-Over 103

 goto retry;

 }

 else

 {

 printf("Error : [%d] %s\n\n", SQLCODE, sqlca.sqlerrm.sqlerrmc);

 return(-1);

 }//else

 }//else

 }//while

 EXEC SQL CLOSE CUR1;

Fail-Over 105

5. Sequence Replication
Altibase only supports replication of table objects by default. Thus, sequence replication means to

create tables only for sequence replication, not copying the sequence itself.

This chapter will cover the conditions and methods supporting the sequence replication.

106 Replication Manual

5.1 Overview

Altibase sequence replication is a feature allowing the remote and local server to use an identical

sequence even in the situation of fail-over. Thus, the same sequence and program sources can be

used in an application.

Sequence replication should replicate the cache start value so that the sequence vales are not

duplicated on the two servers. The sequence equivalent to the cache size is stored in the memory

to use, and if the stored sequence is used all, the cache size sequence is stored again in the

memory.

The tables for sequence replication is internally created because Altibase replication only supports

tables.

Fail-Over 107

5.2 Usage Condition

It is required to configure the following property as shown below. Refer to Replication Reference

and General Reference for details on this property.

REPLICATION_TIMESTAMP_RESOLUTION=1

The sequence option for the local and remote servers should be identical. Refer to SQL Reference

for in-depth information on the sequence option.

START WITH

INCREMENT BY

MAXVALUE

MINVALUE

CACHE

FLUSH CACHE

CYCLE

108 Replication Manual

5.3 Syntax

The major syntax for the sequence replication is as follows. Refer to SQL Reference and Replica-

tion Reference for more details.

5.3.1 Creating Sequence for Sequence Replication

If ENABLE SYNC TABLE option is specified, seq_name$ table for sequence replication is created.

It is recommended to set cache size to 100 or more than 100.

CREATE SEQUENCE user_name.seq_name START WITH 1 CACHE 100 ENABLE SYNC TABLE;

5.3.2 Creating Sequence Replication

The following syntax creates a replication object so that a table for sequence replication can be

duplicated.

CREATE REPLICATION repl_name WITH 'remote_host_ip', remote_host_port_no FROM us-

er_name.seq_name$seq TO user_name.seq_name$seq;

5.3.3 Startup and Shutdown of Sequence Replication

The following syntax starts or shuts down the sequence replication.

ALTER REPLICATION repl_name START;

ALTER REPLICATION repl_name STOP;

5.3.4 Remove of Sequence Replication

After executing a query dropping a replication (DROP REPLICATION) or excluding a table from

the replication target (ALTER TABLE table_name DROP COLUMN), the seq_name$seq table is

removed.

ALTER SEQUENCE user_name.seq_name DISABLE SYNC TABLE;

Fail-Over 109

5.4 Notes

• It is recommended to perform sequence replication in the active-standby environment. The

sequence value can be duplicated due to the replication gap between servers if it is per-

formed in the active-active environment.

• The larger the size of the sequence cache, the faster the sequence creation. The cache size

should be modified in advance since it cannot be modified after the table the for sequence

replication is created.

ALTER SEQUENCE username.seq_name CACHE 100;

ALTER SEQUENCE user1.seq1 ENABLE SYNC TABLE;

• The sequence replication with tables is not recommended. If a fail-over occurs in the situa-

tion of sequence replication delay caused by a table replication delay, sequence duplicate

key error might occur.

• If the fail-over occurs, there would be blanks among key values since the remote server start

from the next cache vales when referencing the sequence.

• Replication recreation, sequence recreation, and modification should be equivalently applied

to all servers.

110 Replication Manual

5.5 Example

The following example verifies the status of replication server when fail-over occurs during the

execution of sequence replication.

A Server B Server

iSQL> create sequence seq1 start

with 1 increment by 1 cache 1000

enable sync table;

Create success.

iSQL> create sequence seq1 start

with 1 increment by 1 cache 1000

enable sync table;

Create success.

iSQL> create replication rep1

with '192.168.1.2', 20002 from

sys.seq1$seq to sys.seq1$seq;

Create success.

iSQL> create replication rep1

with '192.168.1.1', 20001 from

sys.seq1$seq to sys.seq1$seq;

Create success.

iSQL> alter replication rep1

start;

Alter success.

iSQL> select LAST_SYNC_SEQ from

seq1$seq;

LAST_SYNC_SEQ

1

1 row selected.

iSQL> select LAST_SYNC_SEQ from

seq1$seq;

LAST_SYNC_SEQ

1

1 row selected.

iSQL> select seq1.nextval from

dual;

SEQ1.NEXTVAL

1

1 row selected.

iSQL> select LAST_SYNC_SEQ from

seq1$seq;

LAST_SYNC_SEQ

1001

1 row selected.

iSQL> select LAST_SYNC_SEQ from

seq1$seq;

LAST_SYNC_SEQ

1001

1 row selected.

iSQL> select seq1.nextval from

dual;

SEQ1.NEXTVAL

2

1 row selected.

iSQL> select seq1.nextval from

dual;

SEQ1.NEXTVAL

3

1 row selected.

Fail-Over occurrence

 iSQL> select seq1.nextval from

dual;

SEQ1.NEXTVAL

1001

1 row selected.

iSQL> select seq1.nextval from

dual;

SEQ1.NEXTVAL

1002

1 row selected.

iSQL> select seq1.nextval from

dual;

SEQ1.NEXTVAL

Fail-Over 111

1003

1 row selected.

iSQL> select LAST_SYNC_SEQ from

seq1$seq;

LAST_SYNC_SEQ

2001

1 row selected.

iSQL> select LAST_SYNC_SEQ from

seq1$seq;

LAST_SYNC_SEQ

2001

1 row selected.

FAQ 113

Appendix A. FAQ

Replication FAQ

I want to know how to resolve conflicts.

Please refer to Conflict Resolution.

Is replication possible between two servers located on different local networks?

Yes, it's possible. However, because of the great physical distance, replication performance may

decrease somewhat in accordance with bandwidth and latency.

Can I execute ADD COLUMN on a replication target table?

Yes, you may execute DDL statements on replication target tables.

First, make the following property settings: set the REPLICATION_DDL_ENABLE property to 1,

and, using the ALTER SESSION SET REPLICATION command, set the REPLICATION property

to some value other than NONE.

For more information, please refer to Executing DDL Statements on Replication Target Tables.

When one of two servers connected for replication goes down or offline and then comes back

online, how can I check the current status of replication data to be sent to the other server?

The replication gap, meaning the number of redo logs for which corresponding XLogs need to be

sent but have not yet been sent, can be checked by querying the REP_GAP column in the

V$REPGAP performance view. Performance views can also be used to check various other in-

formation related to replication execution.

Is replication possible between two different kinds of servers?

Yes, it's possible. The heterogeneous replication function of Altibase takes into account byte or-

dering, structure aligning, endian and bit count on both the Sender and Receiver in order to make

replication between different kinds of servers possible.

To achieve this, when XLOGs are sent or received, the Sender thread adds data to be sent to a

transmission buffer, and the Receiver thread receives data from a reception buffer in the same

order in which it was sent by the Sender thread. However, when performing replication between

heterogeneous servers, if the byte order is different, the necessary operation of changing the byte

order will entail a reduction in performance.

114 Replication Manual

Can I add or delete tables while replication is active?

This is impossible while replication is underway. To add or delete replication target tables, it is first

necessary to stop replication.

Can I perform replication between memory and disk tables?

Yes, it's possible.

Index 115

Index

Ａ

ADD HOST... 68

ALTER REPLICATION

ADD TABLE Clause ... 53

DROP TABLE Clause ... 53

FLUSH ... 53

PARALLEL Clause ... 52

QUCKSTART ... 52

RESET .. 53

RETRY .. 52

START .. 52

STOP .. 52

SYNC ... 51

SYNC ONLY .. 52

Ｃ

Checking Whether Fail-Over Has Succeeded 82

Communication Channel Error 28

Conflict Resolution .. 30

CREATE REPLICATION .. 48

CTF .. 78

Ｄ

Delete Conflict ... 32

DROP HOST .. 68

Drop replication .. 56

Ｅ

EAGER Mode .. 21

EAGER Replication Failback ... 38

EAGER Replication Parallel Execution 40

Ｆ

Fail-Over Concept .. 78

Fail-Over Interface

Embedded SQL .. 99

JDBC .. 84

SQLCLI .. 91

Fail-Over Process .. 79

FAQ .. 113

Ｉ

Incremental Sync .. 38

Insert Conflict .. 31

Ｌ

LAZY Mode ... 21

Ｍ

Master-slave Scheme ... 32

Ｐ

Parallel Receiver Applier Option 65, 66

Ｒ

Related Performance Views .. 37

Replication Definition... 14

Replication Gapless Option 64, 65, 66

Replication in Multi-IP Network Environment 68

Replication Mode ... 20

Replication property ... 74

Replication Transaction Grouping Option 66

Ｓ

Server Crash ... 27

SET HOST ... 69

STF ... 78

Ｔ

Timestamp-based Scheme .. 35

Troubleshooting Replication Problems...................... 27

116 Replication Manual

Ｕ

Update Conflict ... 32

User-oriented Scheme ... 31

Using Fail-Over .. 81

	Contents
	Preface
	About This Manual
	Target Users
	Software Environment
	Organization
	Documentation Conventions
	Syntax Diagrams
	Sample Code Conventions

	Related Documents
	Online Manuals
	Altibase Welcomes Your Comments

	1. Replication Overview
	1.1 Introduction
	1.1.1 Concepts
	1.1.2 Terminology
	1.1.3 How to Perform Replication in Altibase
	1.1.4 Choosing a Replication Server
	1.1.5 Choosing Replication Targets
	1.1.6 Replication Mode
	1.1.6.1 LAZY Mode
	1.1.6.2 EAGER Mode

	1.1.7 Replication of Partitioned Tables
	1.1.8 Extra Features
	1.1.9 Considerations

	2. Managing Replication
	2.1 Replication Procedures
	2.2 Troubleshooting
	2.2.1 Abnormal Local or Remote Server Shutdown
	2.2.2 Communication Interruption Between Local and Remote Servers
	2.2.3 Network Failure

	2.3 Conflict Resolution
	2.3.1 User-Oriented Scheme
	2.3.1.1 Syntax
	2.3.1.2 Description
	2.3.1.3 Summary

	2.3.2 Master-Slave Scheme
	2.3.2.1 Syntax
	2.3.2.2 Description
	2.3.2.3 Master/Slave Replication Conflict Handling Method
	2.3.2.4 Example

	2.3.3 Timestamp-Based Scheme
	2.3.3.1 Syntax
	2.3.3.2 Description
	2.3.3.3 Timestamp-based Replication Processing Method
	2.3.3.4 Restrictions

	2.4 Related Performance Views
	2.5 EAGER Replication Failback
	2.5.1 Incremental Sync
	2.5.2 After Incremental Sync

	2.6 EAGER Replication Parallel Execution
	2.7 Parallel Replication
	2.7.1 Note

	2.8 Performance View related to Replication

	3. Deploying Replication
	3.1 Considerations
	3.1.1 Prerequisites
	3.1.2 Data Requirements
	3.1.3 Connection Requirements
	3.1.4 Replication Target Column Constraints
	3.1.5 Replication Constraints in EAGER Mode
	3.1.6 Partitioned Table Constraints
	3.1.7 Restrictions on Using Replication for Data Recovery
	3.1.8 Additional Considerations when Using Replication for Data Recovery
	3.1.9 Allowable DDL Statements
	3.1.9.1 Restrictions

	3.2 CREATE REPLICATION
	3.2.1 Syntax
	3.2.2 Prerequisites
	3.2.3 Description
	3.2.4 Error Codes
	3.2.5 Example

	3.3 Starting, Stopping and Modifying Replication using “ALTER REPLICATION”
	3.3.1 Syntax
	3.3.2 Prerequisites
	3.3.3 Description
	3.3.4 Error Codes
	3.3.5 Example

	3.4 DROP REPLICATION
	3.4.1 Syntax
	3.4.2 Prerequisites
	3.4.3 Description
	3.4.4 Error Codes
	3.4.5 Example

	3.5 Executing DDL Statements on Replication Target Tables
	3.5.1 Syntax
	3.5.2 Description
	3.5.3 Restrictions
	3.5.4 Example

	3.6 Extra Features
	3.6.1 Recovery Option
	3.6.1.1 Syntax
	3.6.1.2 Description
	3.6.1.3 Restriction
	3.6.1.4 Example

	3.6.2 Offline Option
	3.6.2.1 Syntax
	3.6.2.2 Description
	3.6.2.3 Offline Option Restrictions
	3.6.2.4 Example

	3.6.3 Replication Gapless Option
	3.6.3.1 Syntax
	3.6.3.2 Description
	3.6.3.3 Restrictions
	3.6.3.4 Example

	3.6.4 Parallel Receiver Applier Option
	3.6.4.1 Syntax
	3.6.4.2 Description
	3.6.4.3 Restrictions
	3.6.4.4 Example

	3.6.5 Replication Transaction Grouping Option
	3.6.5.1 Syntax
	3.6.5.2 Description
	3.6.5.3 Restrictions

	3.7 Replication in a Multiple IP Network Environment
	3.7.1 Syntax
	3.7.2 Description
	3.7.3 Examples

	3.8 Properties

	4. Fail-Over
	4.1 Fail-Over Overview
	4.1.1 Concept
	4.1.2 Process

	4.2 Using Fail-Over
	4.2.1 Registering Connection Properties
	4.2.1.1 Specifying the Connection String in a Client Application
	4.2.1.2 Specifying the Connection Properties in the Settings File

	4.2.2 Checking Whether Fail-Over Succeeded
	4.2.3 Writing Fail-Over Callback Functions

	4.3 JDBC
	4.3.1 Fail-Over Callback Interface
	4.3.2 Writing Fail-Over Callback Functions
	4.3.3 Checking Whether Fail-Over Succeeded
	4.3.4 Sending Fail-Over Connection Settings to WAS
	4.3.5 Example

	4.4 SQL CLI
	4.4.1 Related Data Structures
	4.4.2 Registering Fail-Over
	4.4.3 Checking Whether Fail-Over Succeeded
	4.4.4 Example
	4.4.4.1 Making Environment Settings
	4.4.4.2 Sample Code

	4.5 Embedded SQL
	4.5.1 Registering Fail-Over Callback Functions
	4.5.2 Checking Whether Fail-Over Succeeded
	4.5.3 Example 1
	4.5.4 Example 2

	5. Sequence Replication
	5.1 Overview
	5.2 Usage Condition
	5.3 Syntax
	5.3.1 Creating Sequence for Sequence Replication
	5.3.2 Creating Sequence Replication
	5.3.3 Startup and Shutdown of Sequence Replication
	5.3.4 Remove of Sequence Replication

	5.4 Notes
	5.5 Example

	Appendix A. FAQ
	Replication FAQ

	Index

